Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Yang, Di Rundensteiner, Elke A. Ward, Matthew O. |
| Abstract | The discovery of complex patterns such as clusters, outliers, and associations from huge volumes of streaming data has been recognized as critical for many domains. However, pattern detection with sliding window semantics, as required by applications ranging from stock market analysis to moving object tracking remains largely unexplored. Applying static pattern detection algorithms from scratch to every window is prohibitively expensive due to their high algorithmic complexity. This work tackles this problem by developing the first solution for incremental detection of neighbor-based patterns specific to sliding window scenarios. The specific pattern types covered in this work include density-based clusters and distance-based outliers. Incremental pattern computation in highly dynamic streaming environments is challenging, because purging a large amount of to-be-expired data from previously formed patterns may cause complex pattern changes including migration, splitting, merging and termination of these patterns. Previous incremental neighbor-based pattern detection algorithms, which were typically not designed to handle sliding windows, such as incremental DBSCAN, are not able to solve this problem efficiently in terms of both CPU and memory consumption. To overcome this, we exploit the "predictability" property of sliding windows to elegantly discount the effect of expiring objects on the remaining pattern structures. Our solution achieves minimal CPU utilization, while still keeping the memory utilization linear in the number of objects in the window. Our comprehensive experimental study, using both synthetic as well as real data from domains of stock trades and moving object monitoring, demonstrates superiority of our proposed strategies over alternate methods in both CPU and memory utilization. |
| Starting Page | 529 |
| Ending Page | 540 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781605584225 |
| DOI | 10.1145/1516360.1516422 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-03-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|