Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Dewri, Rinku Ray, Indrajit Ray, Indrakshi Whitley, Darrell |
| Abstract | Privacy models such as k-anonymity and l-diversity typically offer an aggregate or scalar notion of the privacy property that holds collectively on the entire anonymized data set. However, they fail to give an accurate measure of privacy with respect to the individual tuples. For example, two anonymizations achieving the same value of k in the k-anonymity model will be considered equally good with respect to privacy protection. However, it is quite possible that for one of the anonymizations a majority of the individual tuples have lesser probabilities of privacy breaches than their counterparts in the other anonymization. We therefore reject the notion that all anonymizations satisfying a particular privacy property, such as k-anonymity, are equally good. The scalar or aggregate value used in privacy models is often biased towards a fraction of the data set, resulting in higher privacy for some individuals and minimalistic for others. Consequently, to better compare anonymization algorithms, there is a need to formalize and measure this bias. Towards this end, we advocate the use of vector-based methods for representing privacy and other measurable properties of an anonymization. We represent the measure of a given property for an anonymized data set using a property vector. Anonymizations are then compared using quality index functions that quantify the effectiveness of the property vectors. A formal analysis with respect to their scope and limitations is provided. Finally, we present preference based techniques when comparisons are to be made across multiple properties induced by anonymizations. |
| Starting Page | 240 |
| Ending Page | 251 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781605584225 |
| DOI | 10.1145/1516360.1516389 |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2009-03-24 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Performance evaluation Data privacy Anonymization bias |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|