Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | ACM Digital Library |
|---|---|
| Author | Kang, Minseok Kim, Taewhan |
| Copyright Year | 2014 |
| Abstract | The clock distribution network in a synchronous digital circuit delivers a clock signal to every storage element, that is, clock sink in the circuit. However, since the continued technology scaling increases PVT (process-voltage-temperature) variation, the increase of clock-skew variation is highly likely to cause performance degradation or system failure at runtime. Recently, to mitigate the clock-skew variation, many researchers have taken a profound interest in the clock mesh network. However, though the structure of the clock mesh network is excellent in tolerating timing variations, it demands significantly high power consumption due to the use of excessive mesh wire and buffer resources. Thus, optimizing the resources required in the mesh clock synthesis while maintaining the variation tolerance is crucially important. The three major tasks that greatly affect the cost of the resulting clock mesh are: (1) mesh segment allocation, (2) mesh buffer allocation and $\textit{sizing},$ and (3) clock sink binding to mesh segments. Previous clock mesh optimization approaches solve the three tasks sequentially, one by one at a time, to manage the runtime complexity of the tasks at the expense of losing the quality of results. However, since the three tasks are tightly interrelated, simultaneously optimizing all three tasks is essential, if the runtime is ever permitted, to synthesize an economical clock mesh network. In this work, we propose an approach that is able to tackle the problem in an integrated fashion by combining the three tasks into an iterative framework of incremental updates and solving them simultaneously to find a globally optimal allocation of mesh resources while taking into account the clock-skew tolerance constraints. The core parts of this work are a precise analysis on the relation among the resource optimization tasks and an establishment of a mechanism for effective and efficient integration of the tasks. In particular, to handle the runtime problem, we propose a set of speedup techniques, that is, modeling the RC circuit for eliminating redundant matrix multiplications, exploiting a sliding-window scheme, and quickly estimating the buffer sizing effect, which are fitted into our context of fast clock-skew estimation in mesh resource optimization as well as an invention of early decision policies. Through extensive experiments with benchmark circuits, it is shown that our proposed clock mesh synthesizer is able to reduce the worst-case clock skew, total mesh wirelength, total size of mesh driving buffers, and total clock mesh power consumption including short-circuit power by 25.0%, 13.2%, 10.9%, and 11.0% on average compared to that produced by the best-known clock mesh synthesis method (MeshWorks), respectively. |
| Starting Page | 1 |
| Ending Page | 28 |
| Page Count | 28 |
| File Format | |
| ISSN | 10844309 |
| e-ISSN | 15577309 |
| DOI | 10.1145/2611762 |
| Volume Number | 19 |
| Issue Number | 3 |
| Journal | ACM Transactions on Design Automation of Electronic Systems (TODAES) |
| Language | English |
| Publisher | Association for Computing Machinery (ACM) |
| Publisher Date | 2014-06-23 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Clock mesh Resource allocation Resource binding Synthesis Variation tolerance |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Graphics and Computer-Aided Design Computer Science Applications Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|