Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | World Health Organization (WHO)-Global Index Medicus |
|---|---|
| Author | Berry, Daniel J. Abdel, Matthew P. Callaghan, John J. |
| Description | Country affiliation: United States Author Affiliation: Berry DJ ( Department of Orthopedic Surgery, Mayo Clinic, 200 First Street SW, Rochester, MN, USA.) |
| Abstract | BACKGROUND: Wear and corrosion in joint arthroplasty are important causes of failure. From the standpoint of current clinical importance, there are four main categories of wear and tribocorrosion: polyethylene wear, ceramic-on-ceramic (CoC) bearing wear, metal-on-metal (MoM) bearing wear, and taper tribocorrosion. Recently, problems with wear in the knee have become less prominent as have many issues with hip polyethylene (PE) bearings resulting from the success of crosslinked PE. However, MoM articulations and taper tribocorrosion have been associated with soft tissue inflammatory responses, and as a result, they have become prominent clinical concerns. WHERE ARE WE NOW?: For PE wear in the hip, several advances include improved locking mechanisms and data supporting highly crosslinked polyethylenes (HXLPE). Edge-loading in CoC articulations can contribute to stripe wear and subsequent squeaking. For MoM articulations, the relationship of wear-to-edge loading, sensitivity to component positioning, typical soft tissue response, and use of imaging is increasingly understood. Taper tribocorrosion (from femoral head-neck junctions and other modular elements) and associated soft tissue inflammatory responses appear to be serious clinical issues that are not fully understood. WHERE DO WE NEED TO GO?: In the knee, clinical concerns remain with the efficacy of HXLPE, modular connections, and metal allergies. For PE wear in the hip, concerns remain regarding how to increase crosslinking of PE while minimizing PE fractures. With CoC articulations, questions remain on how to prevent noises, chipping, and impingement and if enhanced designs can contribute to improved results. For MoM articulations, we need to improve imaging tests for soft tissue reactions, determine best practices in terms of monitoring protocols, and better define if, how, and when to act on serum metal levels. For taper tribocorrosion, we need to use modularity wisely and also understand how to improve tapers and materials in the future. For patients at risk for tribocorrosion, we need to define realistic diagnostic and monitoring protocols. We also need to enhance revision methods, and the threshold of acceptable soft tissue damage, to minimize complications associated with soft tissue damage such as hip instability. HOW DO WE GET THERE?: HXLPE and other bearing surfaces will likely continue to be refined. We need to develop tapers with more resistance to tribocorrosion through improved understanding of the manufacturing process and ongoing engineering improvements. Revision procedures for wear and tribocorrosion can be enhanced by determining when partial component retention is appropriate and how best to manage soft tissue damage. For CoC articulations, enhanced designs are required to minimize noises, chipping, and impingement. Importantly, we must continue to promote and analyze joint replacement registries to identify early failures and analyze long-term successes. |
| File Format | HTM / HTML |
| ISSN | 0009921X |
| e-ISSN | 15281132 |
| DOI | 10.1007/s11999-014-3610-1 |
| Journal | Clinical Orthopaedics and Related Researchtextregistered |
| Issue Number | 12 |
| Volume Number | 472 |
| Language | English |
| Publisher | Springer |
| Publisher Date | 2014-12-01 |
| Publisher Place | United States |
| Access Restriction | Open |
| Subject Keyword | Discipline Orthopaedics Arthroplasty, Replacement, Hip Instrumentation Arthroplasty, Replacement, Knee Hip Joint Surgery Hip Prosthesis Knee Joint Knee Prosthesis Prosthesis Failure Adverse Effects Biomechanical Phenomena Ceramics Corrosion Foreign-body Reaction Etiology Physiopathology Metal-on-metal Joint Prostheses Polyethylene Prosthesis Design Risk Factors Stress, Mechanical Time Factors |
| Content Type | Text |
| Resource Type | Article |
| Subject | Orthopedics and Sports Medicine Surgery Sports Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|