Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Saadatmand, Pegah Mahdavi, Seied Rabi Nikoofar, Alireza Jazaeri, Seyede Zohreh Ramandi, Fahime Lamei Esmaili, Golbarg Vejdani, Soheil |
| Abstract | Background Radiation induced acute skin toxicity (AST) is considered as a common side effect of breast radiation therapy. The goal of this study was to design dosiomics-based machine learning (ML) models for prediction of AST, to enable creating optimized treatment plans for high-risk individuals. Methods Dosiomics features extracted using Pyradiomics tool (v3.0.1), along with treatment plan-derived dose volume histograms (DVHs), and patient-specific treatment-related (PTR) data of breast cancer patients were used for modeling. Clinical scoring was done using the Common Terminology Criteria for Adverse Events (CTCAE) V4.0 criteria for skin-specific symptoms. The 52 breast cancer patients were grouped into AST 2 + (CTCAE ≥ 2) and AST 2 − (CTCAE < 2) toxicity grades to facilitate AST modeling. They were randomly divided into training (70%) and testing (30%) cohorts. Multiple prediction models were assessed through multivariate analysis, incorporating different combinations of feature groups (dosiomics, DVH, and PTR) individually and collectively. In total, seven unique combinations, along with seven classification algorithms, were considered after feature selection. The performance of each model was evaluated on the test group using the area under the receiver operating characteristic curve (AUC) and f1-score. Accuracy, precision, and recall of each model were also studied. Statistical analysis involved features differences between AST 2 − and AST 2 + groups and cutoff value calculations. Results Results showed that 44% of the patients developed AST 2 + after Tomotherapy. The dosiomics (DOS) model, developed using dosiomics features, exhibited a noteworthy improvement in AUC (up to 0.78), when spatial information is preserved in the dose distribution, compared to DVH features (up to 0.71). Furthermore, a baseline ML model created using only PTR features for comparison with DOS models showed the significance of dosiomics in early AST prediction. By employing the Extra Tree (ET) classifiers, the DOS + DVH + PTR model achieved a statistically significant improved performance in terms of AUC (0.83; 95% CI 0.71–0.90), accuracy (0.70), precision (0.74) and sensitivity (0.72) compared to other models. Conclusions This study confirmed the benefit of dosiomics-based ML in the prediction of AST. However, the combination of dosiomics, DVH, and PTR yields significant improvement in AST prediction. The results of this study provide the opportunity for timely interventions to prevent the occurrence of radiation induced AST. |
| Related Links | https://eurjmedres.biomedcentral.com/counter/pdf/10.1186/s40001-024-01855-y.pdf |
| Ending Page | 15 |
| Page Count | 15 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| DOI | 10.1186/s40001-024-01855-y |
| Journal | European Journal of Medical Research |
| Issue Number | 1 |
| Volume Number | 29 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2024-05-12 |
| Access Restriction | Open |
| Subject Keyword | Medicine Public Health Infectious Diseases Internal Medicine Surgery Oncology Biomedicine Breast cancer Radiation therapy Acute skin toxicity Machine learning Dosiomics Medicine/Public Health |
| Content Type | Text |
| Resource Type | Article |
| Subject | Medicine |
| Journal Impact Factor | 2.8/2023 |
| 5-Year Journal Impact Factor | 2.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|