Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Qi, Xiaoyan Huang, Xin |
| Abstract | Background Since the outbreak of the coronavirus disease (COVID-19) in 2019, caused by SARS-CoV-2, the disease has become a global health threat due to its high infectivity, morbidity, and mortality rates. With China’s comprehensive relaxation of pandemic control policies in 2022, the risk of infection for nursing personnel has further increased. Objectives This study aims to identify risk factors associated with depression among nursing staff during the full reopening of COVID-19 in China in 2022 and to construct a predictive model to assess the risk. Methods From December 9, 2022, to April 6, 2023, a cross-sectional study was conducted in three hospitals in Anhui Province, including 293 nursing staff. The research subjects were divided into a depression group and a non-depression group, and SPSS 23.0 software was used to analyze the data of both groups. We developed four predictive machine learning models: logistic regression, support vector machine, extreme gradient boosting machine (XGBoost), and adaptive boosting (AdaBoost). The development and validation of these models utilized open-source Python libraries such as Scikit-learn and XGBoost. The models were trained and validated using a 10-fold cross-validation method, and the final model selection was based on the area under the receiver operating characteristic curve (AUC). Results The AUC values for the logistic regression, SVM, Logistic, XGBoost, and AdaBoost models were 0.86, 0.88, 0.95, and 0.93, respectively, with F1 scores of 0.79, 0.83, 0.90, and 0.89, respectively. The XGBoost model demonstrated the highest predictive accuracy. However, the study’s findings are limited by the small sample size and single location, and further validation is needed to confirm the model’s generalizability. The extreme gradient boosting machine model, tailored for common risk factors among Chinese nursing staff, provides a powerful tool for predicting the risk of depression. Conclusion This model can assist clinical managers in accurately identifying and addressing potential risk factors during and after the full reopening of COVID-19. Since the working environment and stress factors faced by nursing staff may vary across different countries, the research findings from China can promote international exchange and cooperation in the management of mental health among nursing staff, advice future research should focus on larger, multi-center studies to validate the model’s performance and explore additional risk factors. Clinical trial number Not applicable, because of this article belongs to cross-sectional study. |
| Related Links | https://bmcnurs.biomedcentral.com/counter/pdf/10.1186/s12912-025-02957-6.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726955 |
| DOI | 10.1186/s12912-025-02957-6 |
| Journal | BMC Nursing |
| Issue Number | 1 |
| Volume Number | 24 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2025-04-03 |
| Access Restriction | Open |
| Subject Keyword | Nursing Nursing Management Nursing Research Depression COVID-19 Full reopening Machine learning Risk factors Cross-sectional study Python |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nursing |
| Journal Impact Factor | 3.1/2023 |
| 5-Year Journal Impact Factor | 3.5/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|