Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Gong, Jun Zhang, Yalian Zhong, Xiaogang Zhang, Yi Chen, Yanhua Wang, Huilai |
| Abstract | Background Post-stroke depression (PSD) was one of the most prevalent and serious neuropsychiatric effects after stroke. Nevertheless, the association between liver function test indices and PSD remains elusive, and there is a lack of effective prediction tools. The purpose of this study was to explore the relationship between the liver function test indices and PSD, and construct a prediction model for PSD. Methods All patients were selected from seven medical institutions of Chongqing Medical University from 2015 to 2021. Variables including demographic characteristics and liver function test indices were collected from the hospital electronic medical record system. Univariate analysis, least absolute shrinkage and selection operator (LASSO) and logistic regression analysis were used to screen the predictors. Subsequently, logistic regression, random forest (RF), extreme gradient boosting (XGBoost), gradient boosting decision tree (GBDT), categorical boosting (CatBoost) and support vector machine (SVM) were adopted to build the prediction model. Furthermore, a series of evaluation indicators such as area under curve (AUC), sensitivity, specificity, F1 were used to assess the performance of the prediction model. Results A total of 464 PSD and 1621 stroke patients met the inclusion criteria. Six liver function test items, namely AST, ALT, TBA, TBil, TP, ALB/GLB, were closely associated with PSD, and included for the construction of the prediction model. In the test set, logistic regression model owns the AUC of 0.697. Compared with the other four machine learning models, the GBDT model has the best predictive performance (F1 = 0.498, AUC = 0.761) and was chosen to establish the prediction tool. Conclusions The prediction model constructed using these six predictors with GBDT algorithm displayed a promising prediction ability, which could be used for the participating hospital units or individuals by mobile phone or computer. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02241-0.pdf |
| Ending Page | 9 |
| Page Count | 9 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-023-02241-0 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 23 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2023-07-19 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Post-stroke depression Liver function test Relationship Predictors Prediction model |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|