Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Zhou, Dejia Qiu, Hang Wang, Liya Shen, Minghui |
| Abstract | Background Heart failure (HF) is a major complication following ischemic heart disease (IHD) and it adversely affects the outcome. Early prediction of HF risk in patients with IHD is beneficial for timely intervention and for reducing disease burden. Methods Two cohorts, cases for patients first diagnosed with IHD and then with HF (N = 11,862) and control IHD patients without HF (N = 25,652), were established from the hospital discharge records in Sichuan, China during 2015-2019. Directed personal disease network (PDN) was constructed for each patient, and then these PDNs were merged to generate the baseline disease network (BDN) for the two cohorts, respectively, which identifies the health trajectories of patients and the complex progression patterns. The differences between the BDNs of the two cohort was represented as disease-specific network (DSN). Three novel network features were exacted from PDN and DSN to represent the similarity of disease patterns and specificity trends from IHD to HF. A stacking-based ensemble model DXLR was proposed to predict HF risk in IHD patients using the novel network features and basic demographic features (i.e., age and sex). The Shapley Addictive exPlanations method was applied to analyze the feature importance of the DXLR model. Results Compared with the six traditional machine learning models, our DXLR model exhibited the highest AUC (0.934 ± 0.004), accuracy (0.857 ± 0.007), precision (0.723 ± 0.014), recall (0.892 ± 0.012) and F1 score (0.798 ± 0.010). The feature importance showed that the novel network features ranked as the top three features, playing a notable role in predicting HF risk of IHD patient. The feature comparison experiment also indicated that our novel network features were superior to those proposed by the state-of-the-art study in improving the performance of the prediction model, with an increase in AUC by 19.9%, in accuracy by 18.7%, in precision by 30.7%, in recall by 37.4%, and in F1 score by 33.7%. Conclusions Our proposed approach that combines network analytics and ensemble learning effectively predicts HF risk in patients with IHD. This highlights the potential value of network-based machine learning in disease risk prediction field using administrative data. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-023-02196-2.pdf |
| Ending Page | 12 |
| Page Count | 12 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-023-02196-2 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 23 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2023-05-23 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Administrative data Ischemic heart disease Heart failure Comorbidity network Network feature Ensemble learning |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|