Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature : BioMed Central |
|---|---|
| Author | Selya, Arielle Anshutz, Drake Griese, Emily Weber, Tess L. Hsu, Benson Ward, Cheryl |
| Abstract | Background Diabetes is a medical and economic burden in the United States. In this study, a machine learning predictive model was developed to predict unplanned medical visits among patients with diabetes, and findings were used to design a clinical intervention in the sponsoring healthcare organization. This study presents a case study of how predictive analytics can inform clinical actions, and describes practical factors that must be incorporated in order to translate research into clinical practice. Methods Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the Northern Plains region of the US, from adult (≥ 18 years old) patients with type 1 or type 2 diabetes who received care at least once during the 3-year period. A variety of machine-learning classification models were run using standard EMR variables as predictors (age, body mass index (BMI), systolic blood pressure (BP), diastolic BP, low-density lipoprotein, high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors. Results The best-performing model was a linear-basis support vector machine, which achieved a balanced accuracy (average of sensitivity and specificity) of 65.7%. This model outperformed a conventional logistic regression by 0.4 percentage points. A sensitivity analysis identified BP and HDL as the strongest predictors, such that disrupting these variables with random noise decreased the model’s overall balanced accuracy by 1.3 and 1.4 percentage points, respectively. These recommendations, along with stakeholder engagement, behavioral economics strategies, and implementation science principles helped to inform the design of a clinical intervention targeting behavioral changes. Conclusion Our machine-learning predictive model more accurately predicted unplanned medical visits among patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with diabetes. These findings were translated into a clinical intervention now being piloted at the sponsoring healthcare organization. In this way, this predictive model can be used in moving from prediction to implementation and improved diabetes care management in clinical settings. |
| Related Links | https://bmcmedinformdecismak.biomedcentral.com/counter/pdf/10.1186/s12911-021-01474-1.pdf |
| Ending Page | 11 |
| Page Count | 11 |
| Starting Page | 1 |
| File Format | HTM / HTML |
| ISSN | 14726947 |
| DOI | 10.1186/s12911-021-01474-1 |
| Journal | BMC Medical Informatics and Decision Making |
| Issue Number | 1 |
| Volume Number | 21 |
| Language | English |
| Publisher | BioMed Central |
| Publisher Date | 2021-03-31 |
| Access Restriction | Open |
| Subject Keyword | Health Informatics Information Systems and Communication Service Management of Computing and Information Systems Diabetes Unplanned medical visits Machine learning Predictive model |
| Content Type | Text |
| Resource Type | Article |
| Subject | Health Informatics Computer Science Applications Health Policy |
| Journal Impact Factor | 3.3/2023 |
| 5-Year Journal Impact Factor | 3.9/2023 |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|