Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bányai, L. |
| Copyright Year | 2012 |
| Abstract | The exact least squares line fit with errors in both coordinates (Reed 1992) is investigated together with the approximate solution based on the formalism of the linear Gauss-Helmert model or the unified adjustment approach of the classical textbook by Mikhail (1976). The similarities and the differences are described in details. In spite of the small differences the exact solution is preferable and the calculations are simpler.This paper does not deal with the errors-in-variables (EIV) models solved by the total least squares (TLS) principle, since the exact line fit solution is used to validate this general approach, which is basically designed to solve more sophisticated nonlinear tasks.In the most general case the fit of Person’s data with York’s weights is iteratively solved starting with the arbitrary zero initial value of the slope. The test computation with different but systematically chosen weights proved that in special cases — e.g. the weighted least squares sum of the distances between the data points and the estimated line is minimised — there is no need for iterations at all.It is shown that methods described by Detrekői (1991) and Závoti (2012) are special cases of the general exact solutions.Reed (1992) derived the variances of the slope and intercept parameters without their covariance. The simple linear estimation of variance-covariance matrix of the exact solution is also demonstrated. The importance of the stochastic models coupled with exact solution is also demonstrated. |
| Starting Page | 441 |
| Ending Page | 452 |
| Page Count | 12 |
| File Format | |
| ISSN | 12178977 |
| Journal | Acta Geodaetica et Geophysica Hungarica |
| Volume Number | 47 |
| Issue Number | 4 |
| e-ISSN | 15871037 |
| Language | English |
| Publisher | Springer Netherlands |
| Publisher Date | 2013-02-27 |
| Publisher Institution | Quarterly of the Hungarian Academy of Sciences |
| Publisher Place | Dordrecht |
| Access Restriction | Subscribed |
| Subject Keyword | approximate solution exact solution line fit least squares linear regression Geophysics/Geodesy |
| Content Type | Text |
| Resource Type | Article |
| Subject | Building and Construction Geology Geophysics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|