Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Mansoori, Eghbal G. Shafiee, Khadijeh S. |
| Copyright Year | 2015 |
| Abstract | Generating fuzzy rules for high-dimensional data has been a serious challenge in designing fuzzy rule-based classification systems. For data sets with low dimensions, there are some efficient methods to generate a compact set of short fuzzy rules. However, when the dimensions go up, the number of rules increases exponentially. One solution for lowering the dimensions is feature selection which selects a subset of more effective features. In this regard, a fuzzy feature selection approach is proposed in this paper which tries to choose more relevant features; those which can distinguish the distinct classes well. Our method employs the training patterns in the subspace of some predefined fuzzy sets on each feature and applies their compatibility degrees to evaluate that feature. Since each feature is evaluated individually, this method can be applied efficiently on high-dimensional data. Using the selected features to generate rules in fuzzy rule-based classifiers, this paper also presents a novel criterion to assess each generated rule. This criterion measures the capability of each fuzzy rule in discriminating the positive and negative patterns. To illustrate the scalability of our fuzzy feature selection method beside to the efficiency of generated fuzzy rules, they are applied on some benchmark data sets and the results are compared to some other methods in the literature. The experimental results justify the feasibility of our approach to work with high-dimensional data and its acceptable performance in terms of designing CPU time and classification accuracy. |
| Starting Page | 255 |
| Ending Page | 265 |
| Page Count | 11 |
| File Format | |
| ISSN | 18686478 |
| Journal | Evolving Systems |
| Volume Number | 7 |
| Issue Number | 4 |
| e-ISSN | 18686486 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2015-11-30 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Fuzzy rule-based classifier Fuzzy rule Feature selection Fuzzy feature selection Complexity Artificial Intelligence (incl. Robotics) Complex Systems |
| Content Type | Text |
| Resource Type | Article |
| Subject | Control and Optimization Control and Systems Engineering Modeling and Simulation Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|