Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | SAHU, NIRANJAN |
| Copyright Year | 2013 |
| Abstract | The polycrystalline samples of Pb(Zr$_{0·65 − x }$A$_{ x }$Ti$_{0·35}$)O$_{3}$ (A = Mn/Fe), (x =0·00, 0·05) (PZM/FT) were synthesized by conventional solid-state reaction technique. X-ray diffraction (XRD) pattern was recorded at room temperature and the samples were found in single phase form. All the observed peaks could be indexed to R3c space group with rhombohedral symmetry. XRD pattern has been analysed by employing Rietveld method with the help of FullProf Program. The lattice parameters and unit cell volumes decrease from Mn$^{3 + }$ to Fe$^{3 + }$ ion concentrations. The bond lengths and angles have been calculated by using Powder Cell Programme. Microstructural analysis of the surface of the ceramic compound by scanning electron microscopy (SEM) exhibits that there is a significant change in grain size on introduction of Mn$^{3 + }$ and Fe$^{3 + }$ ions at the Zr-site of the compound. It is observed that both the substitutions (Mn$^{3 + }$ and Fe$^{3 + }$) at Zr site induce an increase in dielectric constant and a shift in Curie temperature (T $_{ c }$). From a.c. conductivity analysis, we have estimated the activation energy for both ferroelectric and paraelectric regions. Both the modified samples are obeying Jonscher power law. From Nyquist plots, the activation energy of grain resistance, relaxation time and bulk conductivity are compared. The grain resistance of the material decreases with rise in temperature which indicates a semiconducting behaviour of the material. |
| Starting Page | 699 |
| Ending Page | 708 |
| Page Count | 10 |
| File Format | |
| ISSN | 02504707 |
| Journal | Bulletin of Materials Science |
| Volume Number | 36 |
| Issue Number | 4 |
| e-ISSN | 09737669 |
| Language | English |
| Publisher | Springer India |
| Publisher Date | 2013-08-08 |
| Publisher Institution | Indian Academy of Sciences |
| Publisher Place | India |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Ceramics X-ray diffraction crystal structure dielectric properties electrical conductivity Nyquist plots Materials Science Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Mechanics of Materials Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|