Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Bohn, Dieter Ren, Jing |
| Copyright Year | 2009 |
| Abstract | Annular cavities are found inside rotor shafts of turbomachines with an axial or radial throughflow of cooling air, which influences the thermal efficiency and system reliability of the gas turbines. The flow and heat transfer phenomena in those cavities should be investigated in order to minimize the thermal load and guarantee the system reliability. An experimental rig is set up in the Institute of Steam and Gas Turbines, RWTH Aachen University, to analyze the flow structure inside the rotating cavity with an axial throughflow of cooling air. The corresponding 3D numerical investigation is conducted with the in-house flow solver CHTflow, in which the Coriolis force and the buoyancy force are implemented in the time-dependent Navier-Stokes equations. Both the experimental and numerical results show that the whole flow structure rotating slower than the cavity rotating speed. The flow passing the observation windows in the experimental and numerical results indicates the quite similar trajectories. The computed sequences and periods of the vortex flow structure correspond closely with those observed in the experiment. Furthermore, the numerical analysis reveals a flow pattern changing between single pair, double pair, and triple pair vortices. It is suggested that the vortices inside the cavity are created by the gravitational buoyancy force in the investigated case, while the number and strength of the vortices are controlled mainly by the Coriolis force. |
| Starting Page | 489 |
| Ending Page | 497 |
| Page Count | 9 |
| File Format | |
| ISSN | 16737393 |
| Journal | Frontiers of Energy and Power Engineering in China |
| Volume Number | 3 |
| Issue Number | 4 |
| e-ISSN | 16737504 |
| Language | English |
| Publisher | SP Higher Education Press |
| Publisher Date | 2009-05-25 |
| Publisher Institution | Chinese Universities |
| Publisher Place | Heidelberg |
| Access Restriction | Subscribed |
| Subject Keyword | rotating cavity buoyancy unsteady flow Energy Technology |
| Content Type | Text |
| Resource Type | Article |
| Subject | Energy Engineering and Power Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|