Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Fradet, Léo Petit, Yvan Wagnac, Eric Aubin, Carl Eric Arux, Pierre Jean |
| Copyright Year | 2013 |
| Abstract | Thoracolumbar spine fracture classifications are mainly based on a post-traumatic observation of fracture patterns, which is not sufficient to provide a full understanding of spinal fracture mechanisms. This study aimed to biomechanically analyze known fracture patterns and to study how they relate to fracture mechanisms. The instigation of each fracture type was computationally simulated to assess the fracture process. A refined finite element model of three vertebrae and intervertebral connective tissues was subjected to 51 different dynamic loading conditions divided into four categories: compression, shear, distraction and torsion. Fracture initiation and propagation were analyzed, and time and energy at fracture initiation were computed. To each fracture pattern described in the clinical literature were associated one or several of the simulated fracture patterns and corresponding loading conditions. When compared to each other, torsion resulted in low-energy fractures, compression and shear resulted in medium energy fractures, and distraction resulted in high-energy fractures. Increased velocity resulted in higher-energy fracture for similar loadings. The use of a finite element model provided quantitative characterization of fracture patterns occurrence complementary to clinical and experimental studies, allowing to fully understand spinal fracture biomechanics. |
| Starting Page | 87 |
| Ending Page | 94 |
| Page Count | 8 |
| File Format | |
| ISSN | 01400118 |
| Journal | Medical and Biological Engineering and Computing |
| Volume Number | 52 |
| Issue Number | 1 |
| e-ISSN | 17410444 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-10-29 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Thoracolumbar spine Vertebral fracture Traumatic loading Finite element model AO classification Injury mechanisms Fracture pattern Human Physiology Biomedical Engineering Imaging Radiology Computer Applications |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomedical Engineering Computer Science Applications |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|