Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Zhao, JiSong Gu, LiangXian Ma, HongZhong |
| Copyright Year | 2013 |
| Abstract | A rapid approach to hypersonic aeroheating predictions in the stagnation region and downstream is developed in the present paper. The engineering method is used to calculate inviscid hypersonic flowfields to reduce time cost, and a combination of the mass flow balance technique and the axisymmetric analog is proposed to account for the entropy swallowing effects. A three-dimensional linear method is derived to fit the vehicle surface flowfields. Then a new axisymmetric analog method based on linear flowfields and linear surface equations is developed, with the complexity and computational cost reduced dramatically. In the stagnation region, an implicit surface fitting is introduced to approximate the primary curvatures and a robust aeroheating prediction method is constructed. The proposed approach is verified on a variety of configurations including spherically blunted cone, double ellipsoid and aerospace vehicle. Numerical results indicate the followings: 1) The approach predicts aeroheating in about one second and the results agree well with CFD simulations and wind-tunnel measurements; 2) with the help of entropy correction, the precision is further improved in the streamline diverging regions on the vehicle surface, while little improvement is found after entropy correction in the regions where the streamlines do not diverge. |
| Starting Page | 2010 |
| Ending Page | 2024 |
| Page Count | 15 |
| File Format | |
| ISSN | 16747321 |
| Journal | Science in China Series E: Technological Sciences |
| Volume Number | 56 |
| Issue Number | 8 |
| e-ISSN | 18691900 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-06-15 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | aeroheating prediction linear flowfield axisymmetric analog three-dimensional stagnation point entropy swallowing Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Engineering Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|