Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Cooper, Joyce Godwin, Christina Hall, Edie Sonne |
| Copyright Year | 2008 |
| Abstract | Although LCA is frequently used in product comparison, many practitioners are interested in identifying and assessing improvements within a life cycle. Thus, the goals of this work are to provide guidelines for scenario formulation for process and material alternatives within a life cycle inventory and to evaluate the usefulness of decision tree and matrix computational structures in the assessment of material and process alternatives. We assume that if the analysis goal is to guide the selection among alternatives towards reduced life cycle environmental impacts, then the analysis should estimate the inventory results in a manner that: (1) reveals the optimal set of processes with respect to minimization of each impact of interest, and (2) minimizes and organizes computational and data collection needs.A sample industrial system is used to reveal the complexities of scenario formulation for process and material alternatives in an LCI. The system includes 4 processes, each executable in 2 different ways, as well as 1 process able to use 2 different materials interchangeably. We formulate and evaluate scenarios for this system using three different methods and find advantages and disadvantages with each. First, the single branch decision tree method stays true to the typical construction of decision trees such that each branch of the tree represents a single scenario. Next, the process flow decision tree method strays from the typical construction of decision trees by following the process flow of the product system, such that multiple branches are needed to represent a single scenario. In the final method, disaggregating the demand vector, each scenario is represented by separate vectors which are combined into a matrix to allow the simultaneous solution of the inventory problem for all scenarios.For both decision tree and matrix methods, scenario formulation, data collection, and scenario analysis are facilitated in two ways. First, process alternatives that cannot actually be chosen should be modeled as sub-inventories (or as a complete LCI within an LCI). Second, material alternatives (e.g., a choice between structural materials) must be maintained within the analysis to avoid the creation of artificial multi-functional processes. Further, in the same manner that decision trees can be used to estimate ‘expected value’ (the sum of the probability of each scenario multiplied by its ‘value’), we find that expected inventory and impact results can be defined for both decision tree and matrix methods.For scenario formulation, naming scenarios in a way that differentiate them from other scenarios is complex and important in the continuing development of LCI data for use in databases or LCA software. In the formulation and assessment of scenarios, decision tree methods offer some level of visual appeal and the potential for using commercially available software/ traditional decision tree solution constructs for estimating expected values (for relatively small or highly aggregated product systems). However, solving decision tree systems requires the use of sequential process scaling which is difficult to formalize with mathematical notation. In contrast, preparation of a demand matrix does not require use of the sequential method to solve the inventory problem but requires careful scenario tracking efforts.Here, we recognize that improvements can be made within a product system. This recognition supports the greater use of LCA in supply chain formation and product research, development, and design. We further conclude that although both decision tree and matrix methods are formulated herein to reveal optimal life cycle scenarios, the use of demand matrices is preferred in the preparation of a formal mathematical construct. Further, for both methods, data collection and assessment are facilitated by the use of sub-inventories (or as a complete LCI within an LCI) for process alternatives and the full consideration of material alternatives to avoid the creation of artificial multi-functional processes.The methods described here are used in the assessment of forest management alternatives and are being further developed to form national commodity models considering technology alternatives, national production mixes and imports, and point-to-point transportation models. |
| Starting Page | 115 |
| Ending Page | 123 |
| Page Count | 9 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 13 |
| Issue Number | 2 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2007-06-11 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Decision trees expected value inventory analysis material choice process choice Environment Environmental Economics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|