Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Larsen, Henrik Fred Birkved, Morten Hauschild, Michael Pennington, David W. Guinée, Jeroen B. |
| Copyright Year | 2004 |
| Abstract | The aim of this study has been to come up with recommendations on how to develop a selection method (SM) within the method development research of the OMNHTOX project. An SM is a method for prioritization of chemical emissions to be included in a Life Cycle Impact Assessment (LCIA) characterisation, in particular for (eco)toxicological impacts. It is therefore designed for pre-screening to support a characterisation method. The main reason why SMs are needed in the context of LCIA is the high number of chemical emissions that potentially contribute to the impacts on ecosystems and human health. It will often not be feasible to cover all emissions with characterisation factors and, therefore, there exists a need to focus the effort on the most significant chemical emissions in the characterisation step. Until now not all LCA studies include tox-icity-related impact categories, and when they do there are typically many gaps. This study covers the only existing methods explicitly designed as SMs (EDIP-selection, Priofactor and CPM-selection), the dominating Chemical Ranking and Scoring (CRS) method in Europe (EURAM) and in the USA (WMPT) that can be adapted for this purpose, as well as methods presenting novel approaches which could be valuable in the development of improved SMs (CART analysis and Hasse diagram technique).The included methods are described. General guidance principles established for CRS systems are applied to SMs and a set of criteria for good performance of SMs is developed. The included methods are finally evaluated against these criteria.Two of the most important performance criteria include providing consistent results relative to the more detailed, associated characterisation methods and the degree of data availability to ensure broader chemical coverage. Applicability to different chemical groups, user friendliness, and transparency are also listed amongst the important criteria. None of the evaluated methods currently fulfil all of the proposed criteria to a degree that excludes the need for development of improved selection methods.For the development of SMs it is recommended that the general principles for CRS systems are taken into account. Furthermore, special attention should be paid to some specific issues, i.e. the emitted amount should be included, data availability should enable broad chemical coverage, and when identifying priority chemicals for the characterisation, the developed SM should generate few false positives (chemical emissions classified wrongly as being of high concern) and no (significant) false negatives (classified wrongly as being of low concern) as compared to the associated characterisation method. These recommendations are not only relevant for a stand alone SM, but also valuable when dealing with simple characterisation methods associated with a more detailed characterisation method.There are several questions that need to be answered before an optimal SM can be developed, inter alia: Is it optimal to just use simple measured data with high availability or are QSAR estimates of more complex, relevant data better? Which key parameters to include and how? Is a statistical approach, like linear regression of characterisation factors or CART analysis, the best solution? |
| Starting Page | 307 |
| Ending Page | 319 |
| Page Count | 13 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 9 |
| Issue Number | 5 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Ecomed |
| Publisher Date | 2004-01-01 |
| Publisher Place | Landsberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Chemical ranking and scoring (CRS) evaluation criteria life cycle impact assessment (LCIA) OMNIITOX selection methods simple characterisation methods toxicity-related impact categories Environment Environmental Economics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|