Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Kim, Seungdo Dale, Bruce E. |
| Copyright Year | 2009 |
| Abstract | Regional variations in the environmental impacts of plant biomass production are significant, and the environmental impacts associated with feedstock supply also contribute substantially to the environmental performance of biobased products. Thus, the regional variations in the environmental performance of biobased products are also significant. This study scrutinizes greenhouse gas (GHG) emissions associated with two biobased products (i.e., ethanol and soybean oil) whose feedstocks (i.e., corn and soybean) are produced in different farming locations.We chose 40 counties in Corn Belt States in the United States as biorefinery locations (i.e., corn dry milling, soybean crushing) and farming sites, and estimated cradle-to-gate GHG emissions of ethanol and of soybean oil, respectively. The estimates are based on 1 kg of each biobased product (i.e., ethanol or soybean oil). The system boundary includes biomass production, the biorefinery, and upstream processes. Effects of direct land use change are included in the greenhouse gas analysis and measured as changes in soil organic carbon level, while the effects of indirect land use change are not considered in the baseline calculations. Those indirect effects however are scrutinized in a sensitivity analysis.GHG emissions of corn-based ethanol range from 1.1 to 2.0 kg of CO$_{2}$ equivalent per kilogram of ethanol, while GHG emissions of soybean oil are 0.4–2.5 kg of CO$_{2}$ equivalent per kilogram of soybean oil. Thus, the regional variations due to farming locations are significant (by factors of 2–7). The largest GHG emission sources in ethanol production are N$_{2}$O emissions from soil during corn cultivation and carbon dioxide from burning the natural gas used in corn dry milling. The second largest GHG emission source groups in the ethanol production system are nitrogen fertilizer (8–12%), carbon sequestration by soil (−15–2%), and electricity used in corn dry milling (7–16%). The largest GHG emission sources in soybean oil production are N$_{2}$O emissions from soil during soybean cultivation (13–57%) and carbon dioxide from burning the natural gas used in soybean crushing (21–47%). The second largest GHG emission source groups in soybean oil production are carbon sequestration by soil (−29–24%), diesel used in soybean cultivation (4–24%), and electricity used in the soybean crushing process (10–21%). The indirect land use changes increase GHG emissions of ethanol by 7–38%, depending on the fraction of forest converted when newly converted croplands maintain crop cultivation for 100 years.Farming sites with higher biomass yields, lower nitrogen fertilizer application rates, and less tillage are favorable to future biorefinery locations in terms of global warming. For existing biorefineries, farmers are encouraged to apply a site-specific optimal nitrogen fertilizer application rate, to convert to no-tillage practices and also to adopt winter cover practices whenever possible to reduce the GHG emissions of their biobased products. Current practices for estimating the effects of indirect land use changes suffer from large uncertainties. More research and consensus about system boundaries and allocation issues are needed to reduce uncertainties related to the effects of indirect land use changes. |
| Starting Page | 540 |
| Ending Page | 546 |
| Page Count | 7 |
| File Format | |
| ISSN | 09483349 |
| Journal | The International Journal of Life Cycle Assessment |
| Volume Number | 14 |
| Issue Number | 6 |
| e-ISSN | 16147502 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2009-06-10 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Direct land use change Ethanol Greenhouse gas Indirect land use change LCA Soybean oil Environmental Economics Environment |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|