Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Liu, Cheng Cheng Xu, Shuai He, Juan Ye, Liu |
| Copyright Year | 2015 |
| Abstract | In this paper, the relationship between $${\pi }$$ -tangle and quantum phase transition (QPT) is investigated by employing the quantum renormalization-group method in the one-dimensional anisotropic XY model. The results show that all the 1-tangles increase firstly and then decrease with the anisotropy parameter $$\gamma $$ increasing, and the Coffman–Kundu–Wootters monogamy inequality is always tenable for this system. The entanglement’s status of subsystems depends on its site position, and this proposition can be generalized to a multipartite system. Meanwhile, with the increasing of the size of the system, the $${\pi }$$ -tangle decreases slowly and tends to a fixed value finally. Additionally, it exhibits a QPT and a maximum value for the next-nearest-neighbor entanglement at the critical point in our model, which is different from the case of two-body system. After several iterations of the renormalization, the quantum entanglement measure can develop two saturated values, which are associated with two different phases: spin-fluid phase and the Néel phase. To gain further insight, the nonanalytic and scaling behaviors of $${\pi }$$ -tangle have also been analyzed in detail. |
| Starting Page | 2013 |
| Ending Page | 2024 |
| Page Count | 12 |
| File Format | |
| ISSN | 15700755 |
| Journal | Quantum Information Processing |
| Volume Number | 14 |
| Issue Number | 6 |
| e-ISSN | 15731332 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2015-04-08 |
| Publisher Place | New York |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Quantum entanglement $${\pi }$$ -tangle Heisenberg XY model Quantum phase transition Quantum Information Technology, Spintronics Quantum Computing Data Structures, Cryptology and Information Theory Quantum Physics Mathematical Physics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Statistical and Nonlinear Physics Theoretical Computer Science Signal Processing Electronic, Optical and Magnetic Materials Electrical and Electronic Engineering Modeling and Simulation |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|