Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Sun, Zhengya Zhao, Yangyang Cao, Dong Hao, Hongwei |
| Copyright Year | 2016 |
| Abstract | We consider multilabel classification problems where the labels are arranged hierarchically in a tree or directed acyclic graph (DAG). In this context, it is of much interest to select a well-connected subset of nodes which best preserve the label dependencies according to the learned models. Top-down or bottom-up procedures for labelling the nodes in the hierarchy have recently been proposed, but they rely largely on pairwise interactions, thus susceptible to get stuck in local optima. In this paper, we remedy this problem by directly finding a small number of label paths that can cover the desired subgraph in a tree/DAG. To estimate the high-dimensional label vector, we adopt the advantages of partial least squares techniques which perform simultaneous projections of the feature and label space, while constructing sound linear models between them. We then show that the optimal label prediction problem with hierarchy constraints can be reasonably transformed into the optimal path prediction problem with the structured sparsity penalties. The introduction of path selection models further allows us to leverage the efficient network flow solvers with polynomial time complexity. The experimental results validate the promising performance of the proposed algorithm in comparison to the state-of-the-art algorithms on both tree- and DAG-structured data sets. |
| Starting Page | 263 |
| Ending Page | 277 |
| Page Count | 15 |
| File Format | |
| ISSN | 13704621 |
| Journal | Neural Processing Letters |
| Volume Number | 45 |
| Issue Number | 1 |
| e-ISSN | 1573773X |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2016-04-28 |
| Publisher Place | New York |
| Access Restriction | Subscribed |
| Subject Keyword | Hierarchical classification Multilabel classification Network flow optimization Artificial Intelligence (incl. Robotics) Complex Systems Computational Intelligence |
| Content Type | Text |
| Resource Type | Article |
| Subject | Neuroscience Artificial Intelligence Computer Networks and Communications Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|