Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Jones, Julian R. Atwood, Robert C. Poologasundarampillai, Gowsihan Yue, Sheng Lee, Peter D. |
| Copyright Year | 2008 |
| Abstract | The need to shift from tissue replacement to tissue regeneration has led to the development of tissue engineering and in situ tissue regeneration. Both of these strategies often employ the use of scaffolds––templates that allow cells to attach and then guide the new tissue growth. There are many design criteria for an ideal scaffold. These criteria vary depending on the tissue type and location in the body. In any application of a scaffold it is vital to be able to characterise the scaffold before it goes into in vitro testing. In vitro testing allows the cell response to be investigated before its in vivo performance is assessed. A full characterisation of events in vitro and in vivo, in three dimensions (3D), is necessary if a scaffold’s performance and effectiveness is to be fully quantified. This paper focuses on porous scaffolds for bone regeneration, suggests appropriate design criteria for a bone regenerating scaffold and then reviews techniques for obtaining the vitally important quantification of its pore structure. The techniques discussed will include newly developed methods of quantifying X-ray microtomography (μCT) images in 3D and for predicting the scaffolds mechanical properties and the likely paths of fluid flow (and hence potential cell migration). The complications in investigating scaffold performance in vitro are then discussed. Finally, the use of μCT for imaging scaffolds for in vivo tests is reviewed. |
| Starting Page | 463 |
| Ending Page | 471 |
| Page Count | 9 |
| File Format | |
| ISSN | 09574530 |
| Journal | Journal of Materials Science: Materials in Medicine |
| Volume Number | 20 |
| Issue Number | 2 |
| e-ISSN | 15734838 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2008-10-07 |
| Publisher Place | Boston |
| Access Restriction | Subscribed |
| Subject Keyword | Surfaces and Interfaces, Thin Films Characterization and Evaluation of Materials Metallic Materials Ceramics, Glass, Composites, Natural Methods Polymer Sciences Biomaterials |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomaterials Biophysics Bioengineering Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|