Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Chen, Pin Chuan Nikitopoulos, Dimitris E. Soper, Steven A. Murphy, Michael C. |
| Copyright Year | 2007 |
| Abstract | Continuous flow polymerase chain reactors (CFPCRs) are BioMEMS devices that offer unique capabilities for the ultra-fast amplification of target DNA fragments using repeated thermal cycling, typically over the following temperature ranges: 90°C–95°C for denaturation, 50°C–70°C for renaturation, and 70°C–75°C for extension. In CFPCR, DNA cocktail is pumped through the constant temperature zones and reaches thermal equilibrium with the channel walls quickly due to its low thermal capacitance. In previous work, a polycarbonate CFPCR was designed with microchannels 150 μm deep, 50 μm wide, and 1.78 m long—including preheating and post-heating zones, fabricated with LIGA, and demonstrated. The high thermal resistance of the polycarbonate led to a high temperature gradient in the micro-device at steady-state and was partly responsible for the low amplification yield. Several steps were taken to ensure that there were three discrete, uniform temperature zones on the polycarbonate CFPCR device including: reducing the thickness of the CFPCR substrate to decrease thermal capacitance, using copper plates as heating elements to ensure a uniform temperature input, and making grooves between temperature zones to increase the resistance to lateral heat conduction between zones. Finite element analyses (FEA) were used to evaluate the macro temperature distribution in the CFPCR device and the micro temperature distribution along a single microchannel. At steady-state, the simulated CFPCR device had three discrete temperature zones, each with a uniform temperature distribution with a variation of ±0.3°C. An infrared (IR) camera was used to measure the steady-state temperature distribution in the prototype CFPCR and validated the simulation results. The temperature distributions along a microchannel at flow velocities from 0 mm/s to 6 mm/s were used to estimate the resulting temperatures of the DNA reagents in a single microchannel. A 500 bp DNA fragment was generated from a bacteriophage λ-DNA target using 20 cycles of PCR. The amplification efficiencies compared to a commercial thermal cycler were 72.7% (2 mm/s), 44% (3 mm/s), and 29.4% (4 mm/s). The amplification efficiency with the modified CFPCR device increased by 363% at 2 mm/s and 440% at 3 mm/s compared to amplification obtained using a CFPCR device with the same fluidic layout, (Hashimoto et al., Lab Chip 4:638, 2004) strictly due to the improved temperature distribution. |
| Starting Page | 141 |
| Ending Page | 152 |
| Page Count | 12 |
| File Format | |
| ISSN | 13872176 |
| Journal | Biomedical Microdevices |
| Volume Number | 10 |
| Issue Number | 2 |
| e-ISSN | 15728781 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2007-09-26 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | PCR Continuous flow PCR Micro PCR Thermal management Finite element simulation Engineering Fluid Dynamics Nanotechnology Biophysics/Biomedical Physics Biomedical Engineering |
| Content Type | Text |
| Resource Type | Article |
| Subject | Nanoscience and Nanotechnology Molecular Biology Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|