WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. Analog Integrated Circuits and Signal Processing
  2. Analog Integrated Circuits and Signal Processing : Volume 67
  3. Analog Integrated Circuits and Signal Processing : Volume 67, Issue 3, June 2011
  4. A 1.8 V 828 μW 80 dB digital MEMS microphone
Loading...

Please wait, while we are loading the content...

Analog Integrated Circuits and Signal Processing : Volume 92
Analog Integrated Circuits and Signal Processing : Volume 91
Analog Integrated Circuits and Signal Processing : Volume 90
Analog Integrated Circuits and Signal Processing : Volume 89
Analog Integrated Circuits and Signal Processing : Volume 88
Analog Integrated Circuits and Signal Processing : Volume 87
Analog Integrated Circuits and Signal Processing : Volume 86
Analog Integrated Circuits and Signal Processing : Volume 85
Analog Integrated Circuits and Signal Processing : Volume 84
Analog Integrated Circuits and Signal Processing : Volume 83
Analog Integrated Circuits and Signal Processing : Volume 82
Analog Integrated Circuits and Signal Processing : Volume 81
Analog Integrated Circuits and Signal Processing : Volume 80
Analog Integrated Circuits and Signal Processing : Volume 79
Analog Integrated Circuits and Signal Processing : Volume 78
Analog Integrated Circuits and Signal Processing : Volume 77
Analog Integrated Circuits and Signal Processing : Volume 76
Analog Integrated Circuits and Signal Processing : Volume 75
Analog Integrated Circuits and Signal Processing : Volume 74
Analog Integrated Circuits and Signal Processing : Volume 73
Analog Integrated Circuits and Signal Processing : Volume 72
Analog Integrated Circuits and Signal Processing : Volume 71
Analog Integrated Circuits and Signal Processing : Volume 70
Analog Integrated Circuits and Signal Processing : Volume 69
Analog Integrated Circuits and Signal Processing : Volume 68
Analog Integrated Circuits and Signal Processing : Volume 67
Analog Integrated Circuits and Signal Processing : Volume 67, Issue 3, June 2011
A UHF current-mode continuous-time band-pass delta sigma modulator using fully balanced active inductor
A 1.44-mW, 1-MHz bandwidth continuous-time Σ∆ modulator with 10-bit ENOB in 130-nm CMOS
A 0.5-V 81.2 dB SNDR audio-band continuous-time Delta-Sigma modulator with SCR feedback
A PLL based WSN transmitter and I/Q LO signal generator at 430–435 MHz
A PLL based 12 GHz LO generator with digital phase control in 90 nm CMOS
An integrated 10 GHz low-noise phase-locked loop with improved PVT tolerance
Contributions to the analysis of deterministic noise on ADPLL jitter performance
Analysis and optimization of the asynchronous modulated light detection pixel
Advanced CAD tool for noise modeling of RF/microwave field effect transistors with large gate widths
Low noise accelerometer microsystem with highly configurable capacitive interface
Design of a voltammetry potentiostat for biochemical sensors
Analog ASIC for improved temperature drift compensation of a high sensitive porous silicon pressure sensor
A 1.8 V 828 μW 80 dB digital MEMS microphone
Analog Integrated Circuits and Signal Processing : Volume 67, Issue 2, May 2011
Analog Integrated Circuits and Signal Processing : Volume 67, Issue 1, April 2011
Analog Integrated Circuits and Signal Processing : Volume 66
Analog Integrated Circuits and Signal Processing : Volume 65
Analog Integrated Circuits and Signal Processing : Volume 64
Analog Integrated Circuits and Signal Processing : Volume 63
Analog Integrated Circuits and Signal Processing : Volume 62
Analog Integrated Circuits and Signal Processing : Volume 61
Analog Integrated Circuits and Signal Processing : Volume 60
Analog Integrated Circuits and Signal Processing : Volume 59
Analog Integrated Circuits and Signal Processing : Volume 58
Analog Integrated Circuits and Signal Processing : Volume 57
Analog Integrated Circuits and Signal Processing : Volume 56
Analog Integrated Circuits and Signal Processing : Volume 55
Analog Integrated Circuits and Signal Processing : Volume 54
Analog Integrated Circuits and Signal Processing : Volume 53
Analog Integrated Circuits and Signal Processing : Volume 52
Analog Integrated Circuits and Signal Processing : Volume 51
Analog Integrated Circuits and Signal Processing : Volume 50
Analog Integrated Circuits and Signal Processing : Volume 49
Analog Integrated Circuits and Signal Processing : Volume 48
Analog Integrated Circuits and Signal Processing : Volume 47
Analog Integrated Circuits and Signal Processing : Volume 46
Analog Integrated Circuits and Signal Processing : Volume 45
Analog Integrated Circuits and Signal Processing : Volume 44
Analog Integrated Circuits and Signal Processing : Volume 43
Analog Integrated Circuits and Signal Processing : Volume 42
Analog Integrated Circuits and Signal Processing : Volume 41
Analog Integrated Circuits and Signal Processing : Volume 40
Analog Integrated Circuits and Signal Processing : Volume 39
Analog Integrated Circuits and Signal Processing : Volume 38
Analog Integrated Circuits and Signal Processing : Volume 37
Analog Integrated Circuits and Signal Processing : Volume 36
Analog Integrated Circuits and Signal Processing : Volume 35
Analog Integrated Circuits and Signal Processing : Volume 34
Analog Integrated Circuits and Signal Processing : Volume 33
Analog Integrated Circuits and Signal Processing : Volume 32
Analog Integrated Circuits and Signal Processing : Volume 31
Analog Integrated Circuits and Signal Processing : Volume 30
Analog Integrated Circuits and Signal Processing : Volume 29
Analog Integrated Circuits and Signal Processing : Volume 28
Analog Integrated Circuits and Signal Processing : Volume 27
Analog Integrated Circuits and Signal Processing : Volume 26
Analog Integrated Circuits and Signal Processing : Volume 25
Analog Integrated Circuits and Signal Processing : Volume 24
Analog Integrated Circuits and Signal Processing : Volume 23
Analog Integrated Circuits and Signal Processing : Volume 22
Analog Integrated Circuits and Signal Processing : Volume 21
Analog Integrated Circuits and Signal Processing : Volume 20
Analog Integrated Circuits and Signal Processing : Volume 19
Analog Integrated Circuits and Signal Processing : Volume 18
Analog Integrated Circuits and Signal Processing : Volume 17
Analog Integrated Circuits and Signal Processing : Volume 16
Analog Integrated Circuits and Signal Processing : Volume 15
Analog Integrated Circuits and Signal Processing : Volume 14
Analog Integrated Circuits and Signal Processing : Volume 13
Analog Integrated Circuits and Signal Processing : Volume 12

Similar Documents

...
A 0.5-V 90-dB SNDR 102 dB-SFDR audio-band continuous-time delta–sigma modulator

Article

...
A microphone readout interface with 74-dB SNDR

Article

...
A 0.5-V 81.2 dB SNDR audio-band continuous-time Delta-Sigma modulator with SCR feedback

Article

...
A 0.5 V 65.7 dB 1 MHz continuous-time complex delta sigma modulator

Article

...
A 89-dB DR 457-μW 20-kHz bandwidth delta-sigma modulator with gain-boosting OTAs

Article

...
A sigma–delta interface ASIC for force-feedback micromachined capacitive accelerometer

Article

...
A 1-V, 82-dB, 2.5-MS/s, single loop, single bit delta-sigma modulator in 0.13-μm CMOS technology

Article

...
A 1.0-mW, 71-dB SNDR, fourth-order ΣΔ interface circuit for MEMS microphones

Article

...
A high performance Σ-Δ readout circuitry for μg resolution microaccelerometers

Article

A 1.8 V 828 μW 80 dB digital MEMS microphone

Content Provider Springer Nature Link
Author Jawed, Syed Arsalan Cattin, Davide Massari, Nicola Gottardi, Massimo Baschirotto, Andrea
Copyright Year 2011
Abstract A single-package digital MEMS Capacitive Microphone (MCM) system is presented. The system consists of a MCM, which is wire-bonded with its readout interface (RI). The MCM sensor is fabricated using a combination of surface and bulk micromachining, employing diaphragm-stiffening to achieve piston-like diaphragm-movement and attaining required sensitivity with a smaller diaphragm-area. The RI is designed in 0.35 μm CMOS and it consists of a preamplifier (PAMP), a sigma-delta modulator (SDM), integrated biasing and digital control, converting the MCM capacitive variations into a single-bit over-sampled digital bitstream. The PAMP employs a two-terminal bootstrapped source-follower buffer to make the readout insensitive to the MCM parasitics, subsequently feeding a third-order single-loop single-bit modulator running at 2.5 MHz. The electrical measurements of the standalone RI demonstrate 55 dB A-weighted @ 1 Pa SNDR at the analog PAMP output and 80 dB A-weighted dynamic-range at the digital output, which corresponds to a conversion range from 40 to 120 dB SPL. The SNDR for acoustic measurements is 33 dB A-weighted @ 1 Pa, limited by the higher MCM thermal noise floor and reduced sensitivity (−53 dB V @ 1 Pa). The frequency characterization of the system for the complete audio-band demonstrates the effect of the system package towards higher frequencies (>9 kHz), giving rise to Helmholtz resonance, and reduction in sensitivity for low-frequencies (<400 Hz) because of acoustic short-circuiting inside the MCM due to flow-by slots. The complete system consumes 460 μA of total current for a 1.8 V single-supply. The total system dimensions are 4.5 × 2 mm2 (excluding the package), demonstrating the viability of a low-area, low-power and high dynamic-range implementation of digital MCM.
Starting Page 395
Ending Page 405
Page Count 11
File Format PDF
ISSN 09251030
Journal Analog Integrated Circuits and Signal Processing
Volume Number 67
Issue Number 3
e-ISSN 15731979
Language English
Publisher Springer US
Publisher Date 2011-01-15
Publisher Place Boston
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword MEMS capacitive microphone Readout interface Low power low noise readout Sigma Delta modulator Circuits and Systems Electrical Engineering Signal, Image and Speech Processing
Content Type Text
Resource Type Article
Subject Surfaces, Coatings and Films Signal Processing Hardware and Architecture
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...