Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Singh, Raghvendra Nitsche, Johannes Andreadis, Stelios T. |
| Copyright Year | 2008 |
| Abstract | DNA microarrays have the potential to revolutionize medical diagnostics and development of individualized medical treatments. However, accurate quantification of scantily expressed genes and precise measurement of small differences between different treatments is not currently feasible. A major challenge remains the understanding of physicochemical processes and rate-limiting steps of hybridization of complex mixtures of DNA targets on immobilized DNA probes. To this end, we developed a mathematical model to describe the effects of molecular orientation and transport on the kinetics and efficiency of hybridization. First, we calculated the hybridization rate constant based on the distance between the complementary nucleotides of the target and probe DNA. The surface reaction rate was then integrated with translational and rotational transport of target DNA to the surface to calculate the kinetics of hybridization. Our model predicts that hybridization of short DNA targets is diffusion limited but long targets are kinetically limited. In addition, for DNA targets with wide size distribution, it may be difficult to distinguish between specific binding of long targets from nonspecific binding of short ones. Our model provides novel insight into the process of DNA hybridization and suggests operating conditions to improve the sensitivity and accuracy of microarray experiments. |
| Starting Page | 255 |
| Ending Page | 269 |
| Page Count | 15 |
| File Format | |
| ISSN | 00906964 |
| Journal | Annals of Biomedical Engineering |
| Volume Number | 37 |
| Issue Number | 1 |
| e-ISSN | 15739686 |
| Language | English |
| Publisher | Springer US |
| Publisher Date | 2008-10-22 |
| Publisher Place | Boston |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Reaction-diffusion model DNA Hybridization Nucleic acid Rotational diffusion Kinetics Biochemistry Mechanics Biophysics/Biomedical Physics Biomedical Engineering Biomedicine general |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biomedical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|