Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Lee, Kun Sang |
| Copyright Year | 2013 |
| Abstract | Numerical investigations and a thermohydraulic evaluation are presented for two-well models of an aquifer thermal energy storage (ATES) system operating under a continuous flow regime. A three-dimensional numerical model for groundwater flow and heat transport is used to analyze the thermal energy storage in the aquifer. This study emphasizes the influence of regional groundwater flow on the heat transfer and storage of the system under various operation scenarios. For different parameters of the system, performances were compared in terms of the temperature of recovered water and the temperature field in the aquifer. The calculated temperature at the producing well varies within a certain range throughout the year, reflecting the seasonal (quarterly) temperature variation of the injected water. The pressure gradient across the system, which determines the direction and velocity of regional groundwater flow, has a substantial influence on the convective heat transport and performance of aquifer thermal storage. Injection/production rate and geometrical size of the aquifer used in the model also impact the predicted temperature distribution at each stage and the recovery water temperature. The hydrogeological-thermal simulation is shown to play an integral part in the prediction of performance of processes as complicated as those in ATES systems.Des investigations numériques et une évaluation thermo-hydraulique sont présentées pour des modèles à deux puits d’un système de stockage d’énergie dans un aquifère thermal (SEAT) fonctionnant en régime permanent. Un modèle numérique tridimensionnel d’écoulements d’eau souterraine et de transport de chaleur est utilisé pour analyser le stockage d’énergie thermale dans l’aquifère. Cette étude met en évidence l’influence de l’écoulement régional des eaux souterraines sur le transport de la chaleur et le stockage du système pour différents scénarios opérationnels. Les performances du modèle ont été comparées en termes de température de l’eau récupérée et du champ de température dans l’aquifère pour différents paramètres du système. La température calculée au niveau du puits de production varie dans une certaine gamme au cours de l’année, traduisant les variations saisonnières de l’eau injectée. Le gradient de pression sur l’ensemble du système, qui détermine la direction et la vitesse des écoulements régionaux d’eau souterraine, a une influence significative sur le transport convectif de chaleur et sur la performance du stockage d’énergie thermale dans l’aquifère. La vitesse d’injection/production et la dimension géométrique de l’aquifère utilisés dans le modèle impactent également la distribution de la température prévue à chaque étape et la température de l’eau récupérée. Il est nécessaire d’intégrer la simulation hydrogéologique thermale dans la prédiction de la performance des processus complexes tels que ceux qui prennent place dans les systèmes SEAT.Se presentan investigaciones numéricas y una evaluación termohidráulica para modelos de dos pozos de un acuífero de un sistema almacenamiento de energía térmica (ATES) operando bajo un régimen de flujo continuo. Un modelo numérico tridimensional para flujo de agua subterránea y el transporte de calor se usa para analizar el almacenamiento de energía térmica en el acuífero. Este estudio enfatiza la influencia del flujo regional de agua subterránea sobre la transferencia de calor y almacenamiento del sistema en varios escenarios de operación. Para diferentes parámetros del sistema, se compararon los rendimientos en términos de la temperatura del agua recuperada y del campo de temperatura en el acuífero. La temperatura calculada en los pozos de producción varía dentro de cierto rango a lo largo del año, reflejando la variación estacional de la temperatura (trimestral) del agua inyectada. El gradiente de presión a través del sistema, que determina la dirección y velocidad del flujo de agua subterránea regional, tiene una influencia sustancial sobre el transporte convectivo del calor y en el rendimiento del almacenamiento térmico del acuífero. La velocidad de inyección / producción y el tamaño geométrico del acuífero usados en el modelo también impactan en distribución predicha de la temperatura en cada etapa y en la temperatura del agua recuperada. Se demuestra que la simulación hidrogeológica térmica juega como una parte integral en la predicción del rendimiento de los procesos tan complicados como aquellos de los sistemas ATES.本研究对连续水流状态下含水层热能储系统两眼井模型进行了数值调查和热-水力评估。用地下水流和热运移三维数值模型分析了含水层热能储。本研究重点论述了不同运行方案下区域地下水流对系统的热传递和储存的影响。针对系统的不同参数,对恢复水的温度和含水层中温度场的性能进行了对比。生产井计算的温度一年内在一定的范围变化,反映出注入水的季节性(季度)温度变化。整个系统的压力梯度决定区域地下水流是方向和速度,对对流热传输和含水层热储存的性能有重要影响。模型中使用的含水层注入/生产量和几何尺寸也对每个阶段的预测温度分布和恢复水温度有影响。显示水文地质-热模拟在预测如同ATES系统一样复杂的过程性能中发挥主要作用。연속 유동 상태에서 운전 중인 대수층 축열시스템의 2정 모델에 대한 수치 연구와 열수리학적 평가를 수행하였다. 지하수 유동 및 열전달에 관한 3차원 수치모델을 사용하여 대수층 내 열에너지 저장을 분석하였다. 본 연구에서는 다양한 운전 시나리오 하에서 광역 지하수 유동이 시스템 내 열전달 및 저장에 미치는 영향 분석에 중점을 두었다. 다양한 시스템 인자들에 대하여 물 온도와 대수층 내 온도 분포의 관점에서 거동을 비교하였다. 생산정에서의 물 온도 계산치는 주입수 온도의 계절적 변화를 반영하여 연중 일정 범위 내에서 변동을 나타냈다. 광역 지하수 유동의 방향과 속도를 결정하는 시스템 내 압력 구배는 대류 열전달과 대수층 축열 거동에 막대한 영향을 미친다. 모델에 사용된 주입/생산율과 대수층의 크기 또한 각 단계에서의 온도 분포와 회수된 물 온도에 영향을 미친다. ATES와 같이 복잡한 프로세스의 거동을 예측할 때 열수리지질학적 시뮬레이션이 필수적인 역할을 수행함을 보여준다.São apresentadas investigações numéricas e uma avaliação termo-hidráulica para modelos de dois poços num sistema aquífero de armazenamento de energia térmica (ATES) funcionando sob um regime de fluxo contínuo. Um modelo numérico tridimensional do fluxo de água subterrânea e de transporte de calor é utilizado para analisar o armazenamento de energia térmica no aquífero. Este estudo enfatiza a influência do fluxo regional da água subterrânea sobre a transferência de calor e armazenamento do sistema em vários cenários de operação. Foi comparado o desempenho para diferentes parâmetros do sistema, em termos de temperatura da água recolhida e da temperatura de campo no aquífero. A temperatura calculada no poço produtor varia dentro de uma determinada faixa ao longo do ano, refletindo a variação de temperatura sazonal (trimestral) da água injetada. O gradiente de pressão através do sistema, o qual determina a direção e velocidade do fluxo regional da água subterrânea, tem uma influência substancial sobre o transporte de calor por conveção e o desempenho de armazenamento térmico do aquífero. A taxa de injeção/produção e as dimensões geométricas do aquífero utilizado no modelo também têm impacte sobre a distribuição da temperatura prevista em cada fase e sobre a temperatura da água recuperada. A simulação termo-hidrogeológica demonstra desempenhar um papel fundamental na predição de desempenho de processos tão complicados como os de sistemas de ATES. |
| Starting Page | 251 |
| Ending Page | 262 |
| Page Count | 12 |
| File Format | |
| ISSN | 14312174 |
| Journal | Hydrogeology Journal |
| Volume Number | 22 |
| Issue Number | 1 |
| e-ISSN | 14350157 |
| Language | Portuguese |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2013-10-02 |
| Publisher Institution | International Association of Hydrogeologists |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Thermal conditions Aquifer thermal energy storage Numerical modeling Groundwater flow Continuous operation Hydrogeology Hydrology/Water Resources Geology Waste Water Technology Water Pollution Control Water Management Aquatic Pollution |
| Content Type | Text |
| Resource Type | Article |
| Subject | Earth and Planetary Sciences Water Science and Technology |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|