Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Czumaj, Artur Elsässer, Robert Gąsieniec, Leszek Sauerwald, Thomas Wang, Xin |
| Copyright Year | 2011 |
| Abstract | We analyze information dissemination in random geometric networks, which consist of n nodes placed uniformly at random in the square $${[0,\sqrt{n}]^{2}}$$ . In the corresponding graph two nodes u and v are connected by a (directed) edge, i.e., u is an (incoming) neighbor of v, if and only if the distance between u and v is smaller than the transmission radius assigned to u. In order to study the performance of distributed communication algorithms in such networks, we adopt here the ad-hoc radio communication model with no collision detection mechanism available. In this model the topology of network connections is not known in advance. Also a node v is capable of receiving a message from its neighbor u if u is the only (incoming) neighbor transmitting in a given step. Otherwise a collision occurs prompting interference that is not distinguishable from the background noise in the network. First, we consider networks modeled by random geometric graphs in which all nodes have the same radius $${r > \delta \sqrt{\log n}}$$ , where δ is a sufficiently large constant. In such networks, we provide a rigorous study of the classical communication problem of distributed gossiping (all-to-all communication). We examine various scenarios depending on initial local knowledge and capabilities of network nodes. We show that in many cases an asymptotically optimal distributed O(D)-time gossiping is feasible, where D stands for the diameter of the network. Later, we consider networks in which the transmission radii of the nodes vary according to a power law distribution, i.e., any node is assigned a transmission radius r > r min according to probability density function ρ(r) ~ r −α . More precisely, $${\rho(r) = (\alpha-1)r_{\min}^{\alpha-1} r^{-\alpha}}$$ , where $${\alpha \in (1, 3)}$$ and $${r_{\min} > \delta \sqrt{\log n}}$$ with δ being a large constant. In this case, we develop a simple broadcasting algorithm that runs in time O(log log n) (i.e., O(D)) always surely, and we show that this result is asymptotically optimal. Finally, we consider networks in which any node is assigned a transmission radius r > c according to the probability density function ρ(r) = (α−1)c α-1 r −α , where α is a constant from the same range as before and c is a constant. In this model the graph is usually not strongly connected, however, there is one giant component with Ω(n) nodes, and there is a directed path from each node of this giant component to every other node in the graph. We assume that the message which has to be disseminated is placed initially in one of the nodes of the giant component, and every node is aware of its own position in $${[0,\sqrt{n}] \times [0,\sqrt{n}]}$$ . Then, we show that there exists a randomized algorithm which delivers the broadcast message to all nodes in the network in time O(D . (log log n)2), almost always surely, where D stands for the diameter of the giant component of the graph. One can conclude from our studies that setting the transmission radii of the nodes according to a power law distribution brings clear advantages. In particular, one can design energy efficient radio networks with low average transmission radius, in which broadcasting can be performed exponentially faster than in the (extensively studied) case where all nodes have the uniform low transmission power. |
| Starting Page | 1 |
| Ending Page | 24 |
| Page Count | 24 |
| File Format | |
| ISSN | 01782770 |
| Journal | Distributed Computing |
| Volume Number | 26 |
| Issue Number | 1 |
| e-ISSN | 14320452 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2011-12-21 |
| Publisher Place | Berlin/Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Computer Communication Networks Computer Hardware Computer Systems Organization and Communication Networks Software Engineering/Programming and Operating Systems Theory of Computation |
| Content Type | Text |
| Resource Type | Article |
| Subject | Theoretical Computer Science Computer Networks and Communications Computational Theory and Mathematics Hardware and Architecture |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|