Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Frederiksen, Carsten S. Grainger, Simon |
| Copyright Year | 2015 |
| Abstract | Based on model output from a multi-model ensemble (MME) of coupled atmosphere-ocean general circulation models, it is shown that prolonged trends in Australian rainfall over the southwest during winter and the monsoonal northwest during summer are associated with trends in the large scale Southern Hemisphere circulation. These trends, in turn, are the result of external radiative forcing, including anthropogenic greenhouse gases, ozone, aerosols and land use change. The MME is used in an analysis of covariance method to separate the internal (natural) variability in the coupled rainfall-atmospheric circulation relationship from influences associated with anomalous external radiative forcing. In both seasons, the leading coupled external mode (singular vector) in the twentieth century runs has rainfall and circulation loading patterns with associated time-series that have statistically significant trends. The associated rainfall loading patterns qualitatively resemble the patterns of observed rainfall trends. The circulation loading patterns reflect the thermal expansion of the tropics and the Hadley Cell. A comparison between similar analyses using the second half of the twenty-first century of the representative concentration pathways (RCP) RCP8.5 and RCP4.5 scenarios show that trends in rainfall and the circulation are projected to continue and intensify under increasing anthropogenic greenhouse gas concentrations. The technique developed here is generally applicable to separate the climate change signal from natural variability in any relevant pair of coupled climate fields. |
| Starting Page | 2455 |
| Ending Page | 2468 |
| Page Count | 14 |
| File Format | |
| ISSN | 09307575 |
| Journal | Climate Dynamics |
| Volume Number | 45 |
| Issue Number | 9-10 |
| e-ISSN | 14320894 |
| Language | English |
| Publisher | Springer Berlin Heidelberg |
| Publisher Date | 2015-01-24 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | External forcing Analysis of covariance Australian rainfall Trends Climate change Geophysics/Geodesy Climatology Oceanography |
| Content Type | Text |
| Resource Type | Article |
| Subject | Atmospheric Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|