Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Springer Nature Link |
|---|---|
| Author | Liang, Z. Bauwens, L. |
| Copyright Year | 2006 |
| Abstract | Hydrogen–oxygen chemistry is characterized by a chain branching mechanism that yields three explosion limits. While a detailed kinetic scheme appropriate for hydrogen–oxygen should produce correct results, in many circumstances, a simpler yet reasonably realistic model will be warranted. In particular, it is easier to develop a clear understanding of the reaction zone structure using a simpler model, that includes only the key mechanisms. To that effect, we consider a four-step chain branching scheme that exhibits an explosion behavior with three limits, which behaves at least qualitatively like hydrogen chemistry. We focus in particular on the structure of the initiation and chain branching zones, using a combination between numerical simulation and analysis. Numerical simulations using this chemical model show distinctive keystone figures in the flow field, close to observations in hydrogen–oxygen detonation experiments. The structure of the chain branching zone is resolved using a perturbation analysis, which clarifies the differences between explosion and no-explosion regions and allows for an evaluation of the induction length in the steady wave. The analysis assumes both high activation energy and a slow initiation. Three cases are identified, respectively, with pressure and temperature located within the explosion region, close to the explosion limit and within the no-explosion region. The induction length is shorter and the reaction rate is faster by several orders of magnitude in the explosion region. |
| Ending Page | 257 |
| Page Count | 11 |
| Starting Page | 247 |
| File Format | |
| ISSN | 09381287 |
| e-ISSN | 14322153 |
| Journal | Shock Waves |
| Issue Number | 3-4 |
| Volume Number | 15 |
| Language | English |
| Publisher | Springer-Verlag |
| Publisher Date | 2006-06-14 |
| Publisher Place | Berlin, Heidelberg |
| Access Restriction | One Nation One Subscription (ONOS) |
| Subject Keyword | Thermodynamics Fluids Explosion Perturbation analysis Engineering Thermodynamics, Transport Phenomena Chain branching Condensed Matter Engineering Fluid Dynamics Acoustics Induction length |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Mechanical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|