WebSite Logo
  • Content
  • Similar Resources
  • Metadata
  • Cite This
  • Log-in
  • Fullscreen
Log-in
Do not have an account? Register Now
Forgot your password? Account recovery
  1. The International Journal of Advanced Manufacturing Technology
  2. The International Journal of Advanced Manufacturing Technology : Volume 35
  3. The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 11-12, February 2008
  4. Studies of chipping mechanisms for dicing silicon wafers
Loading...

Please wait, while we are loading the content...

The International Journal of Advanced Manufacturing Technology : Volume 91
The International Journal of Advanced Manufacturing Technology : Volume 90
The International Journal of Advanced Manufacturing Technology : Volume 89
The International Journal of Advanced Manufacturing Technology : Volume 88
The International Journal of Advanced Manufacturing Technology : Volume 87
The International Journal of Advanced Manufacturing Technology : Volume 86
The International Journal of Advanced Manufacturing Technology : Volume 85
The International Journal of Advanced Manufacturing Technology : Volume 84
The International Journal of Advanced Manufacturing Technology : Volume 83
The International Journal of Advanced Manufacturing Technology : Volume 82
The International Journal of Advanced Manufacturing Technology : Volume 81
The International Journal of Advanced Manufacturing Technology : Volume 80
The International Journal of Advanced Manufacturing Technology : Volume 79
The International Journal of Advanced Manufacturing Technology : Volume 78
The International Journal of Advanced Manufacturing Technology : Volume 77
The International Journal of Advanced Manufacturing Technology : Volume 76
The International Journal of Advanced Manufacturing Technology : Volume 75
The International Journal of Advanced Manufacturing Technology : Volume 74
The International Journal of Advanced Manufacturing Technology : Volume 73
The International Journal of Advanced Manufacturing Technology : Volume 72
The International Journal of Advanced Manufacturing Technology : Volume 71
The International Journal of Advanced Manufacturing Technology : Volume 70
The International Journal of Advanced Manufacturing Technology : Volume 69
The International Journal of Advanced Manufacturing Technology : Volume 68
The International Journal of Advanced Manufacturing Technology : Volume 67
The International Journal of Advanced Manufacturing Technology : Volume 66
The International Journal of Advanced Manufacturing Technology : Volume 65
The International Journal of Advanced Manufacturing Technology : Volume 64
The International Journal of Advanced Manufacturing Technology : Volume 63
The International Journal of Advanced Manufacturing Technology : Volume 62
The International Journal of Advanced Manufacturing Technology : Volume 61
The International Journal of Advanced Manufacturing Technology : Volume 60
The International Journal of Advanced Manufacturing Technology : Volume 59
The International Journal of Advanced Manufacturing Technology : Volume 58
The International Journal of Advanced Manufacturing Technology : Volume 57
The International Journal of Advanced Manufacturing Technology : Volume 56
The International Journal of Advanced Manufacturing Technology : Volume 55
The International Journal of Advanced Manufacturing Technology : Volume 54
The International Journal of Advanced Manufacturing Technology : Volume 53
The International Journal of Advanced Manufacturing Technology : Volume 52
The International Journal of Advanced Manufacturing Technology : Volume 51
The International Journal of Advanced Manufacturing Technology : Volume 50
The International Journal of Advanced Manufacturing Technology : Volume 49
The International Journal of Advanced Manufacturing Technology : Volume 48
The International Journal of Advanced Manufacturing Technology : Volume 47
The International Journal of Advanced Manufacturing Technology : Volume 46
The International Journal of Advanced Manufacturing Technology : Volume 45
The International Journal of Advanced Manufacturing Technology : Volume 44
The International Journal of Advanced Manufacturing Technology : Volume 43
The International Journal of Advanced Manufacturing Technology : Volume 42
The International Journal of Advanced Manufacturing Technology : Volume 41
The International Journal of Advanced Manufacturing Technology : Volume 40
The International Journal of Advanced Manufacturing Technology : Volume 39
The International Journal of Advanced Manufacturing Technology : Volume 38
The International Journal of Advanced Manufacturing Technology : Volume 37
The International Journal of Advanced Manufacturing Technology : Volume 36
The International Journal of Advanced Manufacturing Technology : Volume 35
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 11-12, February 2008
An integrated surface modeling and machining approach for a marine propeller
An enterprise architecture framework for collaboration of virtual enterprise chains
A new method for directly measuring the position errors of a three-axis machine. Part 1: theory
A new technique for directly measuring the position errors of a 3-axis machine. Part 2: application
Real-time simulation and visualization of robotic belt grinding processes
Development of an experiment-based robust design paradigm for multiple quality characteristics using physical programming
An investigation of production workers’ performance variations and the potential impact of attitudes
Manufacturing models for design and NC grinding of truncated-cone ball-end cutters
Design and control of a novel linear wire bonding head
An integrated approach to solve tool-part grouping, job allocation and scheduling problems in a flexible manufacturing system
Fractal roundness modelling of a measured profile of a cylindrical object
Modeling of the MIG welding process using statistical approaches
Assessment of surface roughness based on super resolution reconstruction algorithm
Studies of chipping mechanisms for dicing silicon wafers
A grid-based agile process preparation system
Principles and apparatus of multi-point forming for sheet metal
Optimization design of a CUSUM control chart based on taguchi’s loss function
Drilling of hybrid aluminium matrix composites
Joint identification of modular tools using a novel receptance coupling method
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 9-10, January 2008
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 7-8, January 2008
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 5-6, December 2007
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 3-4, December 2007
The International Journal of Advanced Manufacturing Technology : Volume 35, Issue 1-2, November 2007
The International Journal of Advanced Manufacturing Technology : Volume 34
The International Journal of Advanced Manufacturing Technology : Volume 33
The International Journal of Advanced Manufacturing Technology : Volume 32
The International Journal of Advanced Manufacturing Technology : Volume 31
The International Journal of Advanced Manufacturing Technology : Volume 30
The International Journal of Advanced Manufacturing Technology : Volume 29
The International Journal of Advanced Manufacturing Technology : Volume 28
The International Journal of Advanced Manufacturing Technology : Volume 27
The International Journal of Advanced Manufacturing Technology : Volume 26
The International Journal of Advanced Manufacturing Technology : Volume 25
The International Journal of Advanced Manufacturing Technology : Volume 24
The International Journal of Advanced Manufacturing Technology : Volume 23
The International Journal of Advanced Manufacturing Technology : Volume 22
The International Journal of Advanced Manufacturing Technology : Volume 21
The International Journal of Advanced Manufacturing Technology : Volume 20
The International Journal of Advanced Manufacturing Technology : Volume 19
The International Journal of Advanced Manufacturing Technology : Volume 18
The International Journal of Advanced Manufacturing Technology : Volume 17
The International Journal of Advanced Manufacturing Technology : Volume 16
The International Journal of Advanced Manufacturing Technology : Volume 15
The International Journal of Advanced Manufacturing Technology : Volume 14
The International Journal of Advanced Manufacturing Technology : Volume 13

Similar Documents

...
Machining characteristics on the ultra-precision dicing of silicon wafer

Article

...
High-speed dicing of silicon wafers conducted using ultrathin blades

Article

...
Surface integrity of silicon wafers in ultra precision machining

Article

...
Out-of-plane neural microelectrode arrays fabrication using conventional blade dicing

Article

...
A study of the effect of tool cutting edge radius on ductile cutting of silicon wafers

Article

...
Yield improvement planning for the recycle processes of test wafers

Article

...
Downgrade decision for control/dummy wafers in a fab

Article

...
Precision dicing of hard materials with abrasive blade

Article

...
Modeling and investigation on wafer shape in wafer rotational grinding method

Article

Studies of chipping mechanisms for dicing silicon wafers

Content Provider Springer Nature Link
Author Luo, S. Y. Wang, Z. W.
Copyright Year 2006
Abstract The purpose of this study was to investigate the chipping modes produced in the die edges of dicing silicon wafer using the thin diamond blades. The effects of dicing directions and different wafer types on the chipping size were studied. Furthermore, scratching tests were also used to assist the analysis of studying chipping conditions of the silicon wafer. The experimental results showed that the trace behaviors produced by the diamond indenter in the scratching test of silicon wafer can be divided into the three stages: rubbing, plastic deformation, cracking. The plastic pile up and crack of the scratching traces on the wafer mainly propagate along the development of the easiest slip direction family <110>. The chipping modes produced in dicing silicon wafer can be broadly classified as four types: (1) 30° chipping; (2) 60° chipping; (3) 90° chipping; (4) irregular chipping, which causes these mechanisms of chipping modes due to the meeting between the radial cracks of 30°, 60°, and 90° along the easiest slip direction family <110> and the lateral cracks along the easiest cleavage plane family {111}. When using the thin diamond blade diced on the (111) silicon wafer along the $$ {\left[ {\overline{1} 10} \right]} $$ direction, the size of top chipping produced was smaller than that of along the $$ {\left[ {11\overline{2} } \right]} $$ direction. Besides, for the (100) plane of silicon wafer, the size and the distribution of the chipping modes produced along the $$ {\left[ {\overline{1} 10} \right]} $$ and $$ {\left[ {\overline{1} \overline{1} 0} \right]} $$ directions were similar.
Starting Page 1206
Ending Page 1218
Page Count 13
File Format PDF
ISSN 02683768
Journal The International Journal of Advanced Manufacturing Technology
Volume Number 35
Issue Number 11-12
e-ISSN 14333015
Language English
Publisher Springer-Verlag
Publisher Date 2006-11-25
Publisher Place London
Access Restriction One Nation One Subscription (ONOS)
Subject Keyword Dicing Scratching Silicon wafer Chipping Slip directions and planes Computer-Aided Engineering (CAD, CAE) and Design Mechanical Engineering Production/Logistics Industrial and Production Engineering
Content Type Text
Resource Type Article
Subject Industrial and Manufacturing Engineering Control and Systems Engineering Mechanical Engineering Computer Science Applications Software
  • About
  • Disclaimer
  • Feedback
  • Sponsor
  • Contact
  • Chat with Us
About National Digital Library of India (NDLI)
NDLI logo

National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.

Learn more about this project from here.

Disclaimer

NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.

Feedback

Sponsor

Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.

Contact National Digital Library of India
Central Library (ISO-9001:2015 Certified)
Indian Institute of Technology Kharagpur
Kharagpur, West Bengal, India | PIN - 721302
See location in the Map
03222 282435
Mail: support@ndl.gov.in
Sl. Authority Responsibilities Communication Details
1 Ministry of Education (GoI),
Department of Higher Education
Sanctioning Authority https://www.education.gov.in/ict-initiatives
2 Indian Institute of Technology Kharagpur Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project https://www.iitkgp.ac.in
3 National Digital Library of India Office, Indian Institute of Technology Kharagpur The administrative and infrastructural headquarters of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
4 Project PI / Joint PI Principal Investigator and Joint Principal Investigators of the project Dr. B. Sutradhar  bsutra@ndl.gov.in
Prof. Saswat Chakrabarti  will be added soon
5 Website/Portal (Helpdesk) Queries regarding NDLI and its services support@ndl.gov.in
6 Contents and Copyright Issues Queries related to content curation and copyright issues content@ndl.gov.in
7 National Digital Library of India Club (NDLI Club) Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach clubsupport@ndl.gov.in
8 Digital Preservation Centre (DPC) Assistance with digitizing and archiving copyright-free printed books dpc@ndl.gov.in
9 IDR Setup or Support Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops idr@ndl.gov.in
I will try my best to help you...
Cite this Content
Loading...