Loading...
Please wait, while we are loading the content...
Similar Documents
Oral Topic : Nanomaterials and their Composites for Chemical Sensors Molecule-sensitive and selective gap plasmon-enhanced Raman sensing platform with ultrahigh-density one-nanometer gaps
| Content Provider | Semantic Scholar |
|---|---|
| Author | Park, Sung-Gyu Jeong, Ho-Sang Kim, Dongho |
| Copyright Year | 2018 |
| Abstract | We report a molecule-sensitive and selective nanogap-enhanced plasmonic detection platform with ultrahigh-density one nanometer gaps. We developed a simple method for generating ultrahighdensity plasmonic nanogaps through a direct maskless plasma treatment of a polymer surface in conjunction with the surface tension-driven assembly of freestanding metal nanoparticles. We confirmed that the nanogap size was on the one-nanometer scale. These structures produced an enhanced near-field interaction via coupled localized surface plasmon resonance among Ag nanoparticles. The high areal density of the small nanogaps yielded both a high plasmonic detection performance, with an average Raman enhancement factor (EF) of 1.5 × 10, and a small standard deviation of 11.4%. Inspired by the selective permeation of target substances through cell membranes, the encapsulation of plasmonic nanostructures within nanofiltration membranes enables the selective filtration of molecules based on the degree of membrane swelling and molecular size. Nanofiltration membrane-encapsulated plasmonic substrates do not require pretreatment to exclude large particles or debris in real applications; therefore, they provide a simple and highly effective method of detecting hazardous and toxic molecules using Raman spectroscopy. |
| File Format | PDF HTM / HTML |
| Alternate Webpage(s) | https://www.ama-science.org/proceedings/download/ZwxkAD== |
| Language | English |
| Access Restriction | Open |
| Content Type | Text |
| Resource Type | Article |