Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Won, You-Yeon Nap, R. J. Szleifer, I. |
| Copyright Year | 2012 |
| Abstract | The equilibrium structures of polymers end-tethered to nanoparticles or to nanomicelles interacting with surfaces have been studied theoretically. Polymer chains chemically grafted to nanoparticles are laterally immobile. On the other hand, nanosized polymer micelles formed by polymer chains conjugated with lipids, have end-tethered chains that are laterally mobile within the self-assembled structure. Using a molecular theory, we investigated the influences of the mobile nature of the tethered chains and the nanoscale dimension of the anchoring surface on the structures and interactions of the polymers during the process of binding of the nanoparticle to a surface. We show that polymer chains with bidisperse molecular weight distributions end-tethered to a nanomicelle/nanoparticle surface segregate upon approach to a surface. The shorter chains preferentially locate in the vicinity of the surface, while the longer ones are excluded from the region between the micelle and the surface and thus become more concentrated on the opposite side of the micelle surface. The extent of this segregation is controlled by the overall surface coverage and compositions of the tethered chains, and the sizes of the short and long chains. Combining lateral mobility of the polymer tether with an end-binding capability of the chain (e.g., through a ligand–receptor interaction) can give rise to an enhancement of the interaction of the polymer nanoparticle with a surface. The results demonstrate that laterally mobility of tethered chains is an important aspect that needs to be taken into account in designing polymeric nanoparticles with enhanced surface interaction properties. |
| Starting Page | 1688 |
| Ending Page | 1700 |
| Page Count | 13 |
| File Format | HTM / HTML PDF |
| ISSN | 1744683X |
| Volume Number | 8 |
| Issue Number | 5 |
| Journal | Soft Matter |
| DOI | 10.1039/c2sm06549e |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Nanoparticle Micelle Polymer |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Condensed Matter Physics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|