Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Mori, Toshiyuki Auchterlonie, Graeme Fugane, Keisuke Ye, Fei Drennan, John Sato, Takaya Yan, Pengfei Ito, Shigeharu |
| Copyright Year | 2017 |
| Abstract | To improve the electrical conductivity in the Ba2In2O5 (BIO) system without a large volume change from room temperature to 1273 K, BIO materials dually doped with Zr4+ and Zn2+ samples were prepared by using a soft chemical method. Ba2(In0.7,(Zn0.5,Zr0.5)0.3)2O5 (BIZZO-0.3) consists of an orthorhombic phase from room temperature to 1273 K. While phase transformation with a large volume change was not observed for BIZZO-0.3 in the aforementioned temperature region, the electrical conductivity observed for BIZZO-0.3 was higher than the disordered state of BIO when the measurement temperature of conductivity was more than 923 K. The effect of multiple doping on the enhancement of electrical conductivity was characterized by using the transmission electron microscopy (TEM) analysis. Also, the aforementioned effect was discussed in relation to the atomistic simulation result to explain the TEM observation results. The combination of XRD phase analysis, TEM observation and atomistic simulation indicates that a Frenkel defect cluster (i.e. ) was formed in the ordered state of the BIO lattice. It is concluded that the formation of the Frenkel defect cluster in the BIO lattice contributes to the promotion of local disordering of oxygen vacancies at the microscopic scale and maximization of electrical conductivity in the BIO system. |
| Starting Page | 4688 |
| Ending Page | 4696 |
| Page Count | 9 |
| File Format | HTM / HTML PDF |
| ISSN | 20462069 |
| Volume Number | 7 |
| Issue Number | 8 |
| Journal | RSC Advances |
| DOI | 10.1039/c6ra27418h |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Electrical resistivity and conductivity X-ray crystallography Frenkel defect Frenkel Oxygen Transmission electron microscopy Orthorhombic crystal system Dopant Crystal structure |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Chemical Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|