Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Zhu, Z. H. Li, Z. Gong, S. |
| Copyright Year | 2017 |
| Abstract | Effectively tailoring the temperature coefficient of resistance (TCR) is critical for multifunctional carbon nanotube (CNT) polymer composites with sensing capability. By developing a new multiscale percolation network model, this work reveals theoretically that the zero-TCR could be achieved by adjusting competing contributions from thermally assisted tunnelling transport at CNT junctions and thermal expansion of matrices. On the other hand, the negative temperature coefficient of nanocomposites above glass transition temperature could be greatly enhanced because the transport mechanism at the CNT junctions experienced a transition from tunnelling to hopping. Both tube–tube and/or tube–matrix interactions at conjunction and the structural distortion of nanotubes are considered in the newly proposed model. To validate the model, CNT/polymer nanocomposites with nearly constant resistance values (zero-TCR) below the glass transition temperature and a high TCR (98% resistance change ratio) resulting from the glass transition of the polymer matrix are successfully developed. The study also suggests that the desired parameters to achieve the zero-TCR property and the potential resistance change ratio could be improved by the glass transition in nanocomposites. This could be beneficial for the development of high quality sensing materials. |
| Starting Page | 5113 |
| Ending Page | 5120 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 14639076 |
| Volume Number | 19 |
| Issue Number | 7 |
| Journal | Physical Chemistry Chemical Physics |
| DOI | 10.1039/c6cp08115k |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Carbon nanotube Glass transition Thermal expansion Temperature coefficient CNT Percolation theory Polymer Composite material |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|