Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Yuan, Qilong Xu, Yang Chen, Ding Dai, Dan Jiang, Nan Sun, Hongyan Lin, Cheng-Te Wu, Yuming Guo, Liangchao Zhao, Pei |
| Copyright Year | 2017 |
| Abstract | Graphene shows great promise as a transparent conductive electrode for optoelectronic applications. However, residues generated during the graphene transfer process lead to the degradation of device performance. Here, we show that a combination of UV/ozone pretreatment with the conventional process of graphene transfer can help in obtaining a large area graphene film with a clean surface on arbitrary substrates. In general, after CVD growth, a graphene film would be formed on both bottom and upper surfaces of a Cu foil. With UV/ozone pretreatment, a graphene layer with an undamaged and clean surface can be obtained, which is free of the residues. In addition, the quality of the obtained graphene can also be improved, which is revealed by the increase of the I2D/IG ratio from 2.0 to 3.6 for graphene films prepared without and with UV/ozone pretreatment, respectively. The transferred graphene films show higher transparency (97.5% at 550 nm), and the electron mobility (1178 cm2 V−1 s−1) can be improved by a factor of two compared to that prepared by the conventional transfer process (685 cm2 V−1 s−1). Considering its high efficiency, low cost, and easy scalability, the UV/ozone-assisted transfer method can be beneficial to the performance of graphene-based device applications such as transparent conducting electrodes. |
| Starting Page | 1880 |
| Ending Page | 1884 |
| Page Count | 5 |
| File Format | HTM / HTML PDF |
| ISSN | 20507526 |
| Volume Number | 5 |
| Issue Number | 8 |
| Journal | Journal of Materials Chemistry C |
| DOI | 10.1039/c6tc05505b |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | CVD Graphene Electrode Optoelectronics Ozone Electron mobility |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|