Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Wang, Junxiang Jiao, Handong Tu, Jiguo Mao, Xuhui Fray, Derek J. Liu, Yingjun Jiao, Shuqiang Song, Yang Guo, Zhancheng |
| Copyright Year | 2017 |
| Abstract | Affordable and scalable energy storage systems are necessary to mitigate the output fluctuation of an electrical power grid integrating intermittent renewable energy sources. Conventional battery technologies are unable to meet the demanding low-cost and long-life span requirements of a grid-scale application, although some of them demonstrated impressive high energy density and capacity. More recently, the prototype of an Al-ion battery has been developed using cheap electrode materials (Al and graphite) in an organic room-temperature ionic liquid electrolyte. Here we implement a different Al-ion battery in an inorganic molten salt electrolyte, which contains only an extremely low-cost and nonflammable sodium chloroaluminate melt working at 120 °C. Due to the superior ionic conductivity of the melt electrolyte and the enhanced Al-ion interaction/deintercalation dynamics at an elevated temperature of 120 °C, the battery delivered a discharge capacity of 190 mA h g−1 at a current density of 100 mA g−1 and showed an excellent cyclic performance even at an extremely high current density of 4000 mA g−1: 60 mA h g−1 capacity after 5000 cycles and 43 mA h g−1 capacity after 9000 cycles, with a coulombic efficiency constantly higher than 99%. The low-cost and safe characteristics, as well as the outstanding long-term cycling capability at high current densities allow the scale-up of this brand-new battery for large-scale energy storage applications. |
| Starting Page | 1282 |
| Ending Page | 1291 |
| Page Count | 10 |
| File Format | HTM / HTML PDF |
| ISSN | 20507488 |
| Volume Number | 5 |
| Issue Number | 3 |
| Journal | Journal of Materials Chemistry A |
| DOI | 10.1039/c6ta09829k |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Renewable energy Energy density Electrode Graphite Ionic liquid Electrolyte Molten salt Sodium Electric current |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Renewable Energy, Sustainability and the Environment Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|