Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Krishna, Rajamani Yang, Jiangfeng Yang, Ting Wang, Jun Deng, Shuguang |
| Copyright Year | 2016 |
| Abstract | We report a versatile fabrication method, detailed material characterization, pore architecture formation patterns, and surface functionality of MIL-100Al-derived porous carbons. Oxygen-doped porous carbons were prepared via carbonization of MIL-100Al, MIL-100Al/F127 composite, and MIL-100Al/KOH mixture. Microscopy tools showed different Al2O3 composite patterns and morphologies in the carbon particles, and a coherent discussion of versatile fabrication methods on carbon textural properties is demonstrated. The obtained porous carbons have a large specific surface area (up to 1097 m2 g−1), well-developed narrow microporosity (up to 92% of the pore volume arises from micropores), and excellent CO2 adsorption capacities of 6.5 mmol g−1 at 273 K and 4.8 mmol g−1 at 298 K at an ambient pressure, which is among the highest reported so far for the MOF-derived carbons. Furthermore, excellent CO2/N2 selectivity of 45, CO2/CH4 selectivity of 14.5, and CH4/N2 selectivity of 5.1 were achieved at 298 K and 1 bar. Kinetic selectivity was also calculated, in which high CH4/N2 selectivity (up to 11) was reached at 273 K and 1 bar. Potent gas separation performance and outstanding regenerability, demonstrated by breakthrough simulation and adsorption–desorption cycling tests, enable these MOF derived porous carbons to function as suitable solid adsorbents for CO2 capture from flue gas and bio-gas upgradation. |
| Starting Page | 19095 |
| Ending Page | 19106 |
| Page Count | 12 |
| File Format | HTM / HTML PDF |
| ISSN | 20507488 |
| Volume Number | 4 |
| Issue Number | 48 |
| Journal | Journal of Materials Chemistry A |
| DOI | 10.1039/c6ta07330a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Carbonization Carbon Specific surface area Adsorption Gas separation Flue gas |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Renewable Energy, Sustainability and the Environment Materials Science |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|