Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Gao, Xueyun Huang, Ping Jing, Long Zuo, Taisen Zhu, Huarui Zhao, Yuliang |
| Copyright Year | 2012 |
| Abstract | Graphene sheets were successfully functionalized with 4-nitrophenyl diazonium (NPD). Two dimensional Raman analysis demonstrated that the reaction preferred to happen on single-layer graphene rather than bi-layer or multi-layer, and the edges of graphene were more reactive than the central areas. Atomic force microscopy (AFM) indicated the aryl groups were covalently bonded to one side of the graphene basal plane in a perpendicular configuration. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) manifested that the modified graphene maintained the hexagonal symmetry but its microstructure changed. The main change was that the crystal lattice expanded compared with that of pristine graphene. Meanwhile, for the first time, a crystal lattice constant d ≈ 5.30 Å of functionalized graphene was obtained, which was approximately twice that of the pristine graphene's crystal lattice constant. This implied that the modified graphene had a super-lattice microstructure. Furthermore, the fast Fourier transform (FFT) of the modified graphene verified the formation of the super-lattice structures, and density functional theory (DFT) calculations showed the stability of the super-lattice structures. These modifications—elongation of crystal lattice constant and formation of super-lattice structures—may induce different electronic structures in graphene. |
| Starting Page | 2063 |
| Ending Page | 2068 |
| Page Count | 6 |
| File Format | HTM / HTML PDF |
| ISSN | 09599428 |
| Volume Number | 22 |
| Issue Number | 5 |
| Journal | Journal of Materials Chemistry |
| DOI | 10.1039/c1jm14862a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Raman Fourier Graphene Diazonium compound Atomic-force microscopy Aromaticity Crystal structure Transmission electron microscopy Electron diffraction Lattice constant Superlattice Fast Fourier transform Density functional theory |
| Content Type | Text |
| Resource Type | Article |
| Subject | Chemistry Materials Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|