Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Claeys, Michael Fischer, Nico Nyathi, Thulani M. York, Andy P. E. |
| Copyright Year | 2017 |
| Abstract | The preferential oxidation of carbon monoxide has been identified as an effective route to remove trace amounts of CO (approx. 0.5–1.0 vol%) in the H2-rich reformate gas stream after the low-temperature water–gas shift. Instead of noble metal-based catalysts, Co3O4-based catalysts were investigated in this study as cheaper and more readily available alternatives. This study aimed at investigating the effect of crystallite size on the mass- and surface area-specific CO oxidation activity as well as on the reduction behaviour of Co3O4. Model Co3O4 catalysts with average crystallite sizes between 3 and 15 nm were synthesised using the reverse micelle technique. Results from the catalytic tests revealed that decreasing the size of the Co3O4 crystallites increased the mass-specific CO oxidation activity in the 50–200 °C temperature range. On the other hand, the surface area-specific CO oxidation activity displayed a volcano-type behaviour where crystallites with an average size of 8.5 nm were the most active within the same temperature range. In situ characterisation in the magnetometer revealed that the Co3O4 crystallites are partially reduced to metallic Co above 225 °C with crystallites larger than 7.5 nm showing higher degrees of reduction under the H2-rich environment of CO-PrOx. In situ PXRD experiments further showed the presence of CoO concurrently with metallic fcc Co in all the catalysts during the CO-PrOx runs. In all experiments, the formation of fcc Co coincided with the formation of CH4. Upon decreasing the reaction temperature below 250 °C under the reaction gas, both in situ techniques revealed that the fcc Co previously formed is partially re-oxidised to CoO. |
| Starting Page | 269 |
| Ending Page | 285 |
| Page Count | 17 |
| File Format | HTM / HTML PDF |
| ISSN | 13596640 |
| Volume Number | 197 |
| Journal | Faraday Discussions |
| DOI | 10.1039/c6fd00217j |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Fcc Co Carbon monoxide Crystallite Micelle Magnetometer |
| Content Type | Text |
| Resource Type | Article |
| Subject | Physics and Astronomy Physical and Theoretical Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|