Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | King, A. E. Jurss, J. W. Thoi, V. S. Roz, K. A. El Long, J. R. Castellano, F. N. Nippe, M. Chang, C. J. Khnayzer, R. S. |
| Copyright Year | 2014 |
| Abstract | Homogeneous aqueous solutions of photocatalytic ensembles, consisting of [Ru(bpy)3]2+ as a photosensitizer, ascorbic acid/ascorbate as the electron source, and 10 distinct Co2+-based molecular catalysts, were evaluated for visible-light induced hydrogen evolution using high-throughput screening. The combined results demonstrate that Co2+ complexes bearing tetradentate ligands yield more active photocatalytic compositions than their congeners with pentadentate ligands while operating with high catalyst stability. Additionally, molecular Co2+ catalysts with cis open coordination sites appear to be significantly more active for hydrogen evolution than those with trans open sites. As evidenced by mass spectrometric analysis of the reactor headspace and associated deuteration experiments, the H2 gas generated in all instances was derived from aqueous protons. One of the most promising cis-disposed Co2+ species, [Co(bpyPY2Me)(CH3CN)(CF3SO3)](CF3SO3) (1), engages in highly efficient hydrogen evolving photocatalysis, achieving a turnover number of 4200 (H2/Co) and a turnover frequency of 3200 (H2/Co per h) at pH 4 under simulated sunlight (AM 1.5G, 100 mW cm−2) at room temperature. At equimolar concentrations of photosensitizer and 1, the total hydrogen produced appears to be exclusively limited by the photostability of [Ru(bpy)3]2+, which was observed to decompose into an Ru(bpy)2–ascorbate adduct, as evidenced by HPLC and ESI-MS experiments. Lowering the operating temperature from 27 to 5 °C significantly attenuates bpy dissociation from the sensitizer, resulting in a net ∼two-fold increase in hydrogen production from this composition. The primary electron transfer steps of this photocatalytic ensemble were investigated by nanosecond transient absorption spectroscopy. Photoexcited [Ru(bpy)3]2+ undergoes reductive quenching by ascorbic acid/ascorbate (kq = 2.6 × 107 M−1 s−1), releasing [Ru(bpy)3]+ from the encounter solvent cage with an efficiency of 55 ± 5%. In the presence of catalyst 1, [Ru(bpy)3]+ generated in the initial flash-quench experiment transfers an electron (ket = 2 × 109 M−1 s−1) at an efficiency of 85 ± 10% to the catalyst, which is believed to enter the hydrogen evolution cycle subsequently. Using a combinatorial approach, all ten Co2+ catalysts were evaluated for their potential to operate under neutral pH 7.0 conditions. Catalyst 7, [Co(PY4MeH2)(CH3CN)(CF3SO3)](CF3SO3), was revealed to be most promising, as its performance metrics were only marginally affected by pH and turnover numbers greater than 1000 were easily obtained in photocatalytic hydrogen generation. These comprehensive findings provide guidelines for the development of molecular compositions capable of evolving hydrogen from purely aqueous media. |
| Starting Page | 1477 |
| Ending Page | 1488 |
| Page Count | 12 |
| File Format | HTM / HTML PDF |
| ISSN | 17545692 |
| Volume Number | 7 |
| Issue Number | 4 |
| Journal | Energy & Environmental Science |
| DOI | 10.1039/c3ee43982h |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | HPLC Photosensitizer Acid Hydrogen High-throughput screening Acetonitrile Photocatalysis Turnover number PH Amplitude modulation Adduct High-performance liquid chromatography Operating temperature Dissociative Nanosecond Spectroscopy Solvent Combinatorics |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Chemistry Pollution Renewable Energy, Sustainability and the Environment Nuclear Energy and Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|