Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Jin, Zhen-Yu Lu, An-Hui Hao, Guang-Ping Sun, Qiang Zhang, Xiang-Qian Zhang, Jin-Tao |
| Copyright Year | 2013 |
| Abstract | We report the wet-chemistry synthesis of a new type of porous carbon nanosheet whose thickness can be precisely controlled over the nanometer length scale. This feature is distinct from conventional porous carbons that are composed of micron-sized or larger skeletons, and whose structure is less controlled. The synthesis uses graphene oxide (GO) as the shape-directing agent and asparagine as the bridging molecule that connects the GO and in situ grown polymers by electrostatic interaction between the molecules. The assembly of the nanosheets can produce macroscopic structures, i.e., hierarchically porous carbon monoliths which have a mechanical strength of up to 28.9 MPa, the highest reported for the analogues. The synthesis provides precise control of porous carbons over both microscopic and macroscopic structures at the same time. In all syntheses the graphene content used was in the range 0.5–2.6 wt%, which is significantly lower than that of common surfactants used in the synthesis of porous materials. This indicates the strong shape-directing function of GO. In addition, the overall thickness of the nanosheets can be tuned from 20 to 200 nm according to a fitted linear correlation between the carbon precursor/GO mass ratio and the coating thickness. The porous carbon nanosheets show impressive CO2 adsorption capacity under equilibrium, good separation ability of CO2 from N2 under dynamic conditions, and easy regeneration. The highest CO2 adsorption capacities can reach 5.67 and 3.54 CO2 molecules per nm3 pore volume and per nm2 surface area at 25 °C and ∼1 bar. |
| Starting Page | 3740 |
| Ending Page | 3747 |
| Page Count | 8 |
| File Format | HTM / HTML PDF |
| ISSN | 17545692 |
| Volume Number | 6 |
| Issue Number | 12 |
| Journal | Energy & Environmental Science |
| DOI | 10.1039/c3ee41906a |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Carbon Nanosheet Nanometre Graphene Adsorption |
| Content Type | Text |
| Resource Type | Article |
| Subject | Environmental Chemistry Pollution Renewable Energy, Sustainability and the Environment Nuclear Energy and Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|