Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | Royal Society of Chemistry (RSC) |
|---|---|
| Author | Cusinato, Lucy Rosal, Iker del Poteau, Romuald |
| Copyright Year | 2017 |
| Abstract | Working closely with experimentalists on the comprehension of the surface properties of catalytically active organometallic nanoparticles (NPs) requires the development of several computational strategies which significantly differ from the cluster domain where a precise knowledge of their optimal geometry is a mandatory prerequisite to computational modeling. Theoretical simulations can address several properties of organometallic nanoparticles: the morphology of the metal core, the surface composition under realistic thermodynamic conditions, the relationship between adsorption energies and predictive descriptors of reactivity. It is in such context that an integrated package has been developed or adapted in our group: (i) one tool aims at building a wide variety of the typical shapes exhibited by nanoparticles. Using Reverse Monte Carlo modeling, a given shape can be optimized in order to fit pair distribution function data obtained from X-ray diffraction measurements; (ii) trends in density functional theory (DFT) adsorption energies of surface species can be rationalized and predicted by making use of simple descriptors. This is why we have proposed an extension of the d-band center model, that leads to the formulation of a generalized ligand-field theory. A comparison between cobalt and ruthenium is proposed in the case of a 55-atoms nanocluster. The accuracy of the generalized coordination number [Angew. Chem., Int. Ed., 2014, 53, 8316], a very simple coordination-activity criterion, is also assessed; (iii) the builder package is completed by the steric-driven grafting of ligands on the surface of metal NPs. It easily generates structures with adjustable surface composition values and coordination modes; (iv) after a local optimization at the DFT level of theory, DFT energies and normal modes of vibration can feed a general tool based on the ab initio thermodynamics method. This method aims at easily calculating an optimal surface composition under realistic temperature and pressure conditions. In addition to that, we also show to what extent knowledge of the density of states (DOS) and of the crystal overlap Hamilton population (COHP), both projected from a plane-wave basis set to a local basis set, sheds light on metal core–ligand chemical bonding. |
| Starting Page | 378 |
| Ending Page | 395 |
| Page Count | 18 |
| File Format | HTM / HTML PDF |
| ISSN | 14779226 |
| Volume Number | 46 |
| Issue Number | 2 |
| Journal | Dalton Transactions |
| DOI | 10.1039/c6dt04207d |
| Language | English |
| Publisher | Royal Society of Chemistry |
| Access Restriction | Open |
| Subject Keyword | Hamilton Organometallic chemistry Molecular geometry Adsorption Reverse Monte Carlo Pair distribution function X-ray crystallography Density functional theory Cobalt Ruthenium Coordination number Grafting Mathematical optimization Ab initio quantum chemistry methods Lewis Hamilton Chemistry |
| Content Type | Text |
| Resource Type | Article |
| Subject | Inorganic Chemistry |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|