Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Krouchev, Nedialko I. Rattay, Frank Mohamad, Sawan Vinet, Alain |
| Editor | Bondarenko, Vladimir E. |
| Copyright Year | 2015 |
| Abstract | The model family analyzed in this work stems from the classical Hodgkin-Huxley model (HHM). for a single-compartment (space-clamp) and continuous variation of the voltage-gated sodium channels (Na v ) half-activation-voltage parameter ΔV 1/2, which controls the window of sodium-influx currents. Unlike the baseline HHM, its parametric extension exhibits a richer multitude of dynamic regimes, such as multiple fixed points (FP’s), bi- and multi-stability (coexistence of FP’s and/or periodic orbits). Such diversity correlates with a number of functional properties of excitable neural tissue, such as the capacity or not to evoke an action potential (AP) from the resting state, by applying a minimal absolute rheobase current amplitude. The utility of the HHM rooted in the giant squid for the descriptions of the mammalian nervous system is of topical interest. We conclude that the model’s fundamental principles are still valid (up to using appropriate parameter values) for warmer-blooded species, without a pressing need for a substantial revision of the mathematical formulation. We demonstrate clearly that the continuous variation of the ΔV 1/2 parameter comes close to being equivalent with recent HHM ‘optimizations’. The neural dynamics phenomena described here are nontrivial. The model family analyzed in this work contains the classical HHM as a special case. The validity and applicability of the HHM to mammalian neurons can be achieved by picking the appropriate ΔV 1/2 parameter in a significantly broad range of values. For such large variations, in contrast to the classical HHM, the h and n gates’ dynamics may be uncoupled - i.e. the n gates may no longer be considered in mere linear correspondence to the h gates. ΔV 1/2 variation leads to a multitude of dynamic regimes—e.g. models with either 1 fixed point (FP) or with 3 FP’s. These may also coexist with stable and/or unstable periodic orbits. Hence, depending on the initial conditions, the system may behave as either purely excitable or as an oscillator. ΔV 1/2 variation leads to significant changes in the metabolic efficiency of an action potential (AP). Lower ΔV 1/2 values yield a larger range of AP response frequencies, and hence provide for more flexible neural coding. Such lower values also contribute to faster AP conduction velocities along neural fibers of otherwise comparable-diameter. The 3 FP case brings about an absolute rheobase current. In comparison in the classical HHM the rheobase current is only relative - i.e. excitability is lost after a finite amount of elapsed stimulation time. Lower ΔV 1/2 values translate in lower threshold currents from the resting state. |
| Related Links | http://dx.doi.org/10.1371/journal.pone.0143570 |
| Starting Page | 143570 |
| File Format | |
| ISSN | 19326203 |
| e-ISSN | 19326203 |
| Journal | PLoS ONE |
| Issue Number | 12 |
| Volume Number | 10 |
| Language | English |
| Publisher | Public Library of Science |
| Publisher Date | 2015-12-01 |
| Access Restriction | Open |
| Rights Holder | Public Library of Science |
| Subject Keyword | Biochemistry, Genetics and Molecular Biology(all) Agricultural and Biological Sciences(all) Medicine(all) Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Multidisciplinary |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|