Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | PubMed Central |
|---|---|
| Author | Holmgren, Miguel Rakowski, Robert F. |
| Copyright Year | 2006 |
| Abstract | The effect of intracellular (i) and extracellular (o) Na+ on pre-steady-state transient current associated with Na+/Na+ exchange by the Na+/K+ pump was investigated in the vegetal pole of Xenopus oocytes. Current records in response to 40-ms voltage pulses from −180 to +100 mV in the absence of external Na+ were subtracted from current records obtained under Na+/Na+ exchange conditions. Na+-sensitive transient current and dihydroouabain-sensitive current were equivalent. The quantity of charge moved (Q) and the relaxation rate coefficient (k tot) of the slow component of the \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{o}}}^{+}\end{equation*}\end{document} -sensitive transient current were measured for steps to various voltages (V). The data were analyzed using a four-state kinetic model describing the Na+ binding, occlusion, conformational change, and release steps of the transport cycle. The apparent valence of the Q vs. V relationship was near 1.0 for all experimental conditions. When extracellular Na+ was halved, the midpoint voltage of the charge distribution (V q) shifted −25.3 ± 0.4 mV, which can be accounted for by the presence of an extracellular ion-well having a dielectric distance δ = 0.69 ± 0.01. The effect of changes of \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{i}}}^{+}\end{equation*}\end{document} on \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{o}}}^{+}\end{equation*}\end{document} -sensitive transient current was investigated. The midpoint voltage (V q) of the charge distribution curve was not affected over the \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{o}}}^{+}\end{equation*}\end{document} concentration range 3.13–50 mM. As \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{i}}}^{+}\end{equation*}\end{document} was decreased, the amount of charge measured and its relaxation rate coefficient decreased with an apparent K m of 3.2 ± 0.2 mM. The effects of lowering \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\setlength{\oddsidemargin}{-69pt}\begin{document}\begin{equation*}{\mathrm{Na}}_{{\mathrm{i}}}^{+}\end{equation*}\end{document} on pre-steady-state transient current can be accounted for by decreasing the charge available to participate in the fast extracellular Na+ release steps, by a slowly equilibrating (phosphorylation/occlusion) step intervening between intracellular Na+ binding and extracellular Na+ release. |
| Related Links | http://dx.doi.org/10.1529/biophysj.105.072942 |
| Ending Page | 1616 |
| Page Count | 10 |
| Starting Page | 1607 |
| File Format | |
| ISSN | 00063495 |
| e-ISSN | 15420086 |
| Journal | Biophysical Journal |
| Issue Number | 5 |
| Volume Number | 90 |
| Language | English |
| Publisher | Biophysical Society |
| Publisher Date | 2006-03-01 |
| Access Restriction | Open |
| Rights Holder | Biophysical Society |
| Subject Keyword | Biophysics Research in Higher Education |
| Content Type | Text |
| Resource Type | Article |
| Subject | Biophysics |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|