Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Tan, Shengbo Huang, Kaide Shang, Baolin Guo, Xuemei Wang, Guoli |
Abstract | This study concerns the issue of jointly enhancing noise robustness and promoting signal sparsity in Sparse Bayesian Learning (SBL), which aims at addressing the performance deficiency of sparse signal recovery due to uninformative data with low signal-to-noise ratios. In particular, the authors propose a hierarchical prior noise model with a signal-dependent parametrisation and incorporate it into developing the robust SBL algorithms for sparse signal recovery. The main contribution of the proposed approach is twofold. The first is the new consideration of noise-robustness enhancement in building SBL algorithms, which devotes to noise awareness in counteracting outliers in measurements. Specifically, the idea of signal-sparsity enforcing is extended to build a Least Absolute Deviation like loss criterion with the proposed hierarchical prior model of measurement noise. The second is the novelty of using the signal-dependent parametrisation in the proposed noise model. Indeed, the signal-dependent mechanism plays an indispensable role in producing the reliable noise parameter estimation jointly with updating signal model parameters under the fast SBL framework. In addition to numerical simulation studies, the real-life application of radio tomographic imaging is presented to validate the proposed approach. |
Starting Page | 1104 |
Ending Page | 1113 |
Page Count | 10 |
ISSN | 17519675 |
Volume Number | 11 |
e-ISSN | 17519683 |
Issue Number | Issue 9, Dec (2017) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-spr/11/9 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-spr.2016.0033 |
Journal | IET Signal Processing |
Publisher Date | 2017-07-21 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | Bayes Method Joint Noise Robustness Jointly Enhancing Noise Robustness Learning in AI Least Absolute Deviation Measurement Noise Noise Awareness Noise-robustness Enhancement SBL Algorithm Signal Processing Signal Processing And Detection Signal Processing Theory Signal Sparsity Signal to Noise Ratio Signal-dependent Parametrisation Sparse Bayesian Learning Sparse Signal Recovery Statistics Uninformative Data |
Content Type | Text |
Resource Type | Article |
Subject | Signal Processing Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|