Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Li, Xurong Ji, Shouling Ji, Juntao Ren, Zhenyu Wu, Chunming Li, Bo Wang, Ting |
| Abstract | Adversarial examples (AEs) against deep neural networks (DNNs) raise wide concerns about the robustness of DNNs. Existing detection mechanisms are often limited to a given attack algorithm. Therefore, it is highly desirable to develop a robust detection approach that remains effective for a large group of attack algorithms. In addition, most of the existing defences only perform well for small images (e.g. MNIST and Canadian institute for advanced research (CIFAR)) rather than large images (e.g. ImageNet). In this paper, the authors propose a robust and effective defence method for analysing the sensitivity of various AEs, especially in a much harder case (large images). Their method first creates a feature map from the input space to the new feature space, by utilising 19 different feature mapping methods. Then, a detector is learned with the machine-learning algorithm to recognise the unique distribution of AEs. Their extensive evaluations on their proposed detector show that their detector can achieve: (i) low false-positive rate (<1%), (ii) high true-positive rate (higher than 98%), (iii) low overhead (<0.1 s per input), and (iv) good robustness (work well across different learning models, attack algorithms, and parameters), which demonstrate the efficacy of the proposed detector in practise. |
| Starting Page | 201 |
| Ending Page | 213 |
| Page Count | 13 |
| ISSN | 17519632 |
| Volume Number | 14 |
| e-ISSN | 17519640 |
| Issue Number | Issue 5, Aug (2020) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-cvi/14/5 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2019.0378 |
| Journal | IET Computer Vision |
| Publisher Date | 2020-02-25 |
| Access Restriction | Open |
| Rights Holder | © The Institution of Engineering and Technology |
| Subject Keyword | Adversarial Examples Detection AE Detection Computer Vision And Image Processing Technique Deep Neural Network Detection Mechanisms DNN Feature Mapping Feature Space Learning in AI Machine Learning Neural Computing Technique Neural Nets Object Detection Optical, Image And Video Signal Processing Space Mappings |
| Content Type | Text |
| Resource Type | Article |
| Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|