Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Guo, Lie Wang, Dongxing Li, Linhui Feng, Jindun |
Abstract | With the development of deep learning, the performance of object detection has made great progress. However, there are still some challenging problems, such as the detection accuracy of small objects and the efficiency of the detector. This study proposes an accurate and fast single shot multibox detector, which includes context comprehensive enhancement (CCE) module and feature enhancement module (FEM). To integrate more efficient information when aggregating context information, the conv4_3 and fc_7 feature maps are merged to design the CCE module. To obtain more fine-grained feature information, this study presents a FEM and special feature enhancement module (FEM-s) module that can fuse different receptive field sizes to better adapt to the scale change of the object. Compared to existing methods based on deep learning, the proposed method helps to gradually produce more detailed feature maps with better performance. Under the premise of ensuring real-time speed, the authors network can achieve 81.2 mean average precision on the PASCAL VOC 2007 test with an input size of 320 × 320 on a single Nvidia 2080Ti GPU. |
Starting Page | 391 |
Ending Page | 398 |
Page Count | 8 |
ISSN | 17519632 |
Volume Number | 14 |
e-ISSN | 17519640 |
Issue Number | Issue 6, Sep (2020) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-cvi/14/6 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-cvi.2019.0711 |
Journal | IET Computer Vision |
Publisher Date | 2020-04-03 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | CCE Module Computer Vision And Image Processing Technique Context Information Conv4_3 Feature Maps Convolutional Neural Nets Deep Learning Fast Single Shot Multibox Detector Fc_7 Feature Maps Feature Enhancement Module Feature Extraction FEM-s Module Fine-grained Feature Information Image Representation Image Segmentation Learning in AI Neural Computing Technique Nvidia 2080Ti GPU Object Detection Optical, Image And Video Signal Processing |
Content Type | Text |
Resource Type | Article |
Subject | Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|