Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IET Digital Library |
|---|---|
| Author | Liu, Mingjie Jin, Cheng Bin Yang, Bin Cui, Xuenan Kim, Hakil |
| Abstract | In recent years, convolutional neural networks (CNNs) have been widely used for visual object tracking, especially in combination with correlation filters (CFs). However, the increasing complex CNN models introduce more useless information, which may decrease the tracking performance. This study proposes an online feature map selection method to remove noisy and irrelevant feature maps from different convolutional layers of CNN, which can reduce computation redundancy and improve tracking accuracy. Furthermore, a novel appearance model update strategy, which exploits the feedback from the peak value of response maps, is developed to avoid model corruption. Finally, an extensive evaluation of the proposed method was conducted over OTB-2013 and OTB-2015 datasets, and compared with different kinds of trackers, including deep learning-based trackers and CF-based trackers. The results demonstrate that the proposed method achieves a highly satisfactory performance. |
| Starting Page | 2023 |
| Ending Page | 2029 |
| Page Count | 7 |
| ISSN | 17519659 |
| Volume Number | 12 |
| e-ISSN | 17519667 |
| Issue Number | Issue 11, Nov (2018) |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/iet-ipr/12/11 |
| Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/iet-ipr.2018.5454 |
| Journal | IET Image Processing |
| Publisher Date | 2018-07-17 |
| Access Restriction | Open |
| Rights Holder | © The Institution of Engineering and Technology |
| Subject Keyword | Appearance Model Update Strategy CF-based Trackers CNN Computation Redundancy Computer Vision And Image Processing Technique Convolutional Layer Convolutional Neural Network Correlation Filter Deep Learning-based Trackers Feature Extraction Feature Map Selection Method Learning in AI Model Corruption Neural Computing Technique Neural Nets Object Detection Object Tracking Occlusion-robust Object Tracking Online Selected Hierarchical Feature Optical, Image And Video Signal Processing OTB-2015 Datasets Tracking Accuracy Tracking Performance Useless Information Visual Object Tracking |
| Content Type | Text |
| Resource Type | Article |
| Subject | Signal Processing Electrical and Electronic Engineering Computer Vision and Pattern Recognition Software |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|