Please wait, while we are loading the content...
Please wait, while we are loading the content...
Content Provider | IET Digital Library |
---|---|
Author | Zhao, Bowen Cao, Zhulou Wang, Sicheng |
Abstract | Lung vessel segmentation of computed tomography (CT) images is important in clinical practise and challenging due to difficulties associated with minor size and blurred edges of lung vessels. A vessel segmentation method is proposed for lung images based on a random forest classifier and sparse auto-encoder features. First, the multi-scale representations of lung images are obtained using the Gaussian pyramid. Second, a sparse auto-encoder of three layers is trained using randomly selected patches of these images. Next, the trained weight of the sparse auto-encoder is used as the convolution kernel to extract features of different scale images. Finally, a random forest classifier is exploited to segment the vessels. The proposed method was evaluated on the original and noise-added VESSEL12 dataset that is publicly available. Comparison with some classical methods and existing machine learning methods shows that the proposed method reaches the state-of-the-art accuracy. The results also show that a shallow neural network is a powerful feature extraction tool. |
Starting Page | 220 |
Ending Page | 222 |
Page Count | 3 |
ISSN | 00135194 |
Volume Number | 53 |
e-ISSN | 1350911X |
Issue Number | Issue 4, Feb (2017) |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/el/53/4 |
Alternate Webpage(s) | https://digital-library.theiet.org/content/journals/10.1049/el.2016.4438 |
Journal | Electronics Letters |
Publisher Date | 2017-01-19 |
Access Restriction | Open |
Rights Holder | © The Institution of Engineering and Technology |
Subject Keyword | Biology And Medical Computing Biomedical Imaging/measurement Blurred Edges Computed Tomography Computer Vision And Image Processing Technique Computerised Tomography Convolution Kernel CT Image Edge Detection Feature Extraction Feature Extraction Tool Gaussian Pyramid Image Restoration Image Segmentation Knowledge Engineering Technique Learning in AI Lung Lung Image Lung Vessel Segmentation Machine Learning Method Medical Image Processing Multiscale Representations Neural Computing Technique Neural Nets Noise-added VESSEL12 Dataset Optical, Image And Video Signal Processing Patient Diagnostic Method And Instrumentation Radiography And Computed Tomography Random Forest Classifier Shallow Neural Network Sparse Auto Encoder Sparse Autoencoder Feature X-Ray Technique X-Rays And Particle Beam |
Content Type | Text |
Resource Type | Article |
Subject | Electrical and Electronic Engineering |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
Sl. | Authority | Responsibilities | Communication Details |
---|---|---|---|
1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
Loading...
|