Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | de la Roche, G. Gorcey, J.-M. Jie Zhang |
| Copyright Year | 2009 |
| Description | Author affiliation: CITI Laboratory/INRIA, INSA Lyon - ARES project, 69621 Villeurbanne - FRANCE (Gorcey, J.-M.) || Centre for Wireless Network Design, University of Bedfordshire, Luton LU1 3JU - UK (de la Roche, G.; Jie Zhang) |
| Abstract | With the widely acceptance of WiFi networks, and the highly regarded development of new indoor technologies like distributed antenna systems and femtocells, propagation models that take accurately into account the indoor channel characteristics are necessary for the purpose of network planning. Due to the complexity of such indoor environments made of obstacles causing numerous reflexions and diffractions, full 3D indoor propagation models are required. The MR-FDPF was recently proposed for indoor radio coverage but suffered from high complexity when trying to extends this model to 3D. That is why in this paper a solution to reduce the complexity of the MR-FDPF method is provided. In this new approach, the size of the matrices to be inverted is reduced, by neglecting the propagation modes that have low influence on the resulting coverage. It can be shown that propagation matrices of large MR-nodes can be divided into two classes, i.e. standard flow matrices and return flow matrices, each one having its possible simplifications. This new model allowed us to run full 3D simulations on a 3-floored building, with a RMSE of about 4dB between simulation and measurements. |
| Starting Page | 2241 |
| Ending Page | 2245 |
| File Size | 958140 |
| Page Count | 5 |
| File Format | |
| ISBN | 9781424447534 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-03-23 |
| Publisher Place | Germany |
| Access Restriction | Subscribed |
| Rights Holder | VDE |
| Subject Keyword | Transmission line matrix methods Indoor radio communication Wireless Network Design Optimization methods Indoor environments Time domain analysis Indoor channel modeling 3D propagation Frequency domain analysis Diffraction Wireless networks Ray tracing Frequency Domain ParFlow Finite difference methods |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|