Please wait, while we are loading the content...
Please wait, while we are loading the content...
| Content Provider | IEEE Xplore Digital Library |
|---|---|
| Author | Corazza, A. Di Martino, S. Ferrucci, F. Gravino, C. Mendes, E. |
| Copyright Year | 2009 |
| Description | Author affiliation: The University of Auckland, Private Bag 92019, Auckland, New Zealand (Mendes, E.) || University of Napoli ¿Federico II¿, Via Cinthia, I-80126, Napoli, Italy (Corazza, A.; Di Martino, S.) || University of Salerno, Via Ponte Don Melillo, I-84084 Fisciano (SA) Italy (Ferrucci, F.; Gravino, C.) |
| Abstract | Support Vector Regression (SVR) is a new generation of Machine Learning algorithms, suitable for predictive data modeling problems. The objective of this paper is to investigate the effectiveness of SVR for Web effort estimation, in particular when dealing with a cross-company dataset. To gain a deeper insight on the method, we carried out an empirical study using four kernels for SVR, namely linear, polynomial, Gaussian, and sigmoid. Moreover, we used two variables' preprocessing strategies (normalization and logarithmic), and two different dependent variables (effort and inverse effort). As a result, SVR was applied using six different configurations for each kernel. As for the dataset, we employed the Tukutuku database, which is widely adopted in Web effort estimation studies. A hold-out approach was adopted to evaluate the prediction accuracy for all the configurations, using two training sets, each containing data on 130 projects randomly selected, and two test sets, each containing the remaining 65 projects. As benchmark, SVR-based predictions were also compared to predictions obtained using Manual StepWise Regression, Case-Based Reasoning, and Bayesian Networks. Our results suggest that SVR performed well, since on the first hold-out, the linear kernel with a logarithmic transformation of variables provided significantly superior prediction accuracy than all the other techniques, while for the second hold-out, the Gaussian kernel achieved significantly superior predictions than all other techniques, except for Manual StepWise Regression. |
| Starting Page | 191 |
| Ending Page | 202 |
| File Size | 1260981 |
| Page Count | 12 |
| File Format | |
| ISBN | 9781424448425 |
| ISSN | 19386451 |
| DOI | 10.1109/ESEM.2009.5315991 |
| Language | English |
| Publisher | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher Date | 2009-10-15 |
| Publisher Place | USA |
| Access Restriction | Subscribed |
| Rights Holder | Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subject Keyword | Accuracy Machine learning algorithms Databases Bayesian methods Data preprocessing Manuals Predictive models Benchmark testing Polynomials Kernel |
| Content Type | Text |
| Resource Type | Article |
National Digital Library of India (NDLI) is a virtual repository of learning resources which is not just a repository with search/browse facilities but provides a host of services for the learner community. It is sponsored and mentored by Ministry of Education, Government of India, through its National Mission on Education through Information and Communication Technology (NMEICT). Filtered and federated searching is employed to facilitate focused searching so that learners can find the right resource with least effort and in minimum time. NDLI provides user group-specific services such as Examination Preparatory for School and College students and job aspirants. Services for Researchers and general learners are also provided. NDLI is designed to hold content of any language and provides interface support for 10 most widely used Indian languages. It is built to provide support for all academic levels including researchers and life-long learners, all disciplines, all popular forms of access devices and differently-abled learners. It is designed to enable people to learn and prepare from best practices from all over the world and to facilitate researchers to perform inter-linked exploration from multiple sources. It is developed, operated and maintained from Indian Institute of Technology Kharagpur.
Learn more about this project from here.
NDLI is a conglomeration of freely available or institutionally contributed or donated or publisher managed contents. Almost all these contents are hosted and accessed from respective sources. The responsibility for authenticity, relevance, completeness, accuracy, reliability and suitability of these contents rests with the respective organization and NDLI has no responsibility or liability for these. Every effort is made to keep the NDLI portal up and running smoothly unless there are some unavoidable technical issues.
Ministry of Education, through its National Mission on Education through Information and Communication Technology (NMEICT), has sponsored and funded the National Digital Library of India (NDLI) project.
| Sl. | Authority | Responsibilities | Communication Details |
|---|---|---|---|
| 1 | Ministry of Education (GoI), Department of Higher Education |
Sanctioning Authority | https://www.education.gov.in/ict-initiatives |
| 2 | Indian Institute of Technology Kharagpur | Host Institute of the Project: The host institute of the project is responsible for providing infrastructure support and hosting the project | https://www.iitkgp.ac.in |
| 3 | National Digital Library of India Office, Indian Institute of Technology Kharagpur | The administrative and infrastructural headquarters of the project | Dr. B. Sutradhar bsutra@ndl.gov.in |
| 4 | Project PI / Joint PI | Principal Investigator and Joint Principal Investigators of the project |
Dr. B. Sutradhar bsutra@ndl.gov.in Prof. Saswat Chakrabarti will be added soon |
| 5 | Website/Portal (Helpdesk) | Queries regarding NDLI and its services | support@ndl.gov.in |
| 6 | Contents and Copyright Issues | Queries related to content curation and copyright issues | content@ndl.gov.in |
| 7 | National Digital Library of India Club (NDLI Club) | Queries related to NDLI Club formation, support, user awareness program, seminar/symposium, collaboration, social media, promotion, and outreach | clubsupport@ndl.gov.in |
| 8 | Digital Preservation Centre (DPC) | Assistance with digitizing and archiving copyright-free printed books | dpc@ndl.gov.in |
| 9 | IDR Setup or Support | Queries related to establishment and support of Institutional Digital Repository (IDR) and IDR workshops | idr@ndl.gov.in |
|
Loading...
|